全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Qualitative and Quantitative Control of Honeys Using NMR Spectroscopy and Chemometrics

DOI: 10.1155/2013/825318

Full-Text   Cite this paper   Add to My Lib

Abstract:

400?MHz nuclear magnetic resonance (NMR) spectroscopy and multivariate data analysis techniques were used in the context of food surveillance to measure 328 honey samples with 1H and 13C NMR. Using principal component analysis (PCA), clusters of honeys from the same botanical origin were observed. The chemical shifts of the principal monosaccharides (glucose and fructose) were found to be mostly responsible for this differentiation. Furthermore, soft independent modeling of class analogy (SIMCA) and partial least squares discriminant analysis (PLS-DA) could be used to automatically classify spectra according to their botanical origin with 95–100% accuracy. Direct quantification of 13 compounds (carbohydrates, aldehydes, aliphatic and aromatic acids) was additionally possible using external calibration curves and applying TSP as internal standard. Hence, NMR spectroscopy combined with chemometrics is an efficient tool for simultaneous identification of botanical origin and quantification of selected constituents of honeys. 1. Introduction Honey is a natural, sweet, and syrupy fluid collected by bees from nectar of flowers [1]. The taste and aroma of this liquid vary according to its floral origin, geographical and seasonal conditions [1]. The large number of melliferous sources gives therefore the opportunity to produce many characteristical unifloral and a high number of polyfloral nectar honeys. Each honey is unique on the basis of chemistry, amount, and combination of the various components that give each honey a unique and individual organoleptic character. The control and characterization of quality and botanical origin of unifloral honeys are of great importance and interest in apiculture. Today the most important techniques to determine or certify the unifloral origin of honeys are the melissopalynological analysis and the evaluation of organoleptic characteristics [2]. Current quality assessment of honey by these methods are time-consuming and often operator dependent. Moreover, some types of adulterations (e.g., the addition of sugar concentrate to honey) can hardly be detected with such methods [3]. Various novel, fast, and accurate chromatographic methods such as high-performance liquid chromatography (HPLC) [4–7], gas chromatography (GC) [8–10], liquid chromatography with electrochemical detector [11], and matrix-assisted-laser-desorption/ionization-time-of-flight-mass-spectrometry (MALDI TOF MS) [12, 13] have been used to obtain the chemical composition and detect possible adulteration of honey. Vibration spectroscopic methods such as

References

[1]  A. R. Aparna and D. Rajalakshmi, “Honey—its characteristics, sensory aspects, and applications,” Food Reviews International, vol. 15, no. 4, pp. 455–471, 1999.
[2]  J. Louveaux, A. Maurizio, and G. Vorwohl, “Methods of Melissopalynology,” Bee World, vol. 59, no. 4, pp. 139–157, 1978.
[3]  A. Zakaria, A. Y. Shakaff, M. J. Masnan et al., “A biomimetic sensor for the classification of honeys of different floral origin and the detection of adulteration,” Sensors, vol. 11, no. 8, pp. 7799–7822, 2011.
[4]  P. Arquillue and A. H. Marteache, “Analysis of protein amino acids in some honeys from Los Monegros Spain,” Alimentaria, vol. 24, no. 183, pp. 67–71, 1987.
[5]  J. Prodolliet and C. Hischenhuber, “Food authentication by carbohydrate chromatography,” Zeitschrift fur Lebensmittel -Untersuchung und -Forschung, vol. 207, no. 1, pp. 1–12, 1998.
[6]  L. A. Marghitas, D. S. Dezmirean, C. B. Pocol, M. Ilea, O. Bobis, and I. Gergen, “The development of a biochemical profile of acacia honey by identifying biochemical determinants of its quality,” Notulae Botanicae Horti Agrobotanici Cluj-Napoca, vol. 38, no. 2, pp. 84–90, 2010.
[7]  G. Beretta, R. Artali, E. Caneva, S. Orlandini, M. Centini, and R. M. Facino, “Quinoline alkaloids in honey: further analytical (HPLC-DAD-ESI-MS, multidimensional diffusion-ordered NMR spectroscopy), theoretical and chemometric studies,” Journal of Pharmaceutical and Biomedical Analysis, vol. 50, no. 3, pp. 432–439, 2009.
[8]  J. Gilbert, M. J. Shepherd, M. A. Wallwork, and R. G. Harris, “Determination of the geographical origin of honeys by multivariate-analysis of gas-chromatographic data on their free amino-acid content,” Journal of Apicultural Research, vol. 20, no. 2, pp. 125–135, 1981.
[9]  A. Terrab, B. V. Castrillón, and M. J. D. Dapena, “Pollen analysis of honeys from the Gharb region (NW Morocco),” Grana, vol. 40, no. 4-5, pp. 210–216, 2001.
[10]  A. I. Ruiz-Matute, M. Brokl, A. C. Soria, M. L. Sanz, and I. Martínez-Castro, “Gas chromatographic-mass spectrometric characterisation of tri- and tetrasaccharides in honey,” Food Chemistry, vol. 120, no. 2, pp. 637–642, 2010.
[11]  L. Nagy, R. Bátai, G. Nagy, and G. Nagy, “Application of copper electrode based amperometric detector cell for LC analysis of main sugar component of honey and nectar,” Analytical Letters, vol. 43, no. 7, pp. 1411–1426, 2010.
[12]  S. R. Won, D. C. Lee, S. H. Ko, J. W. Kim, and H. I. Rhee, “Honey major protein characterization and its application to adulteration detection,” Food Research International, vol. 41, no. 10, pp. 952–956, 2008.
[13]  J. Wang, M. M. Kliks, W. Qu, S. Jun, G. Shi, and Q. X. Li, “Rapid determination of the geographical origin of honey based on protein fingerprinting and barcoding using MALDI TOF MS,” Journal of Agricultural and Food Chemistry, vol. 57, no. 21, pp. 10081–10088, 2009.
[14]  J. A. F. Pierna, O. Abbas, P. Dardenne, and V. Baeten, “Discrimination of Corsican honey by FT-Raman spectroscopy and chemometrics,” Biotechnology, Agronomy and Society and Environment, vol. 15, no. 1, pp. 75–84, 2011.
[15]  A. N. Batsoulis, N. G. Siatis, A. C. Kimbaris et al., “FT-Raman spectroscopic simultaneous determination of fructose and glucose in honey,” Journal of Agricultural and Food Chemistry, vol. 53, no. 2, pp. 207–210, 2005.
[16]  M. García-Alvarez, J. F. Huidobro, M. Hermida, and J. L. Rodríguez-Otero, “Major components of honey analysis by near-infrared transflectance spectroscopy,” Journal of Agricultural and Food Chemistry, vol. 48, no. 11, pp. 5154–5158, 2000.
[17]  L. Dvash, O. Afik, S. Shafir et al., “Determination by near-infrared spectroscopy of perseitol used as a marker for the botanical origin of avocado (Persea americana Mill.) honey,” Journal of Agricultural and Food Chemistry, vol. 50, no. 19, pp. 5283–5287, 2002.
[18]  X. Zhu, S. Li, Y. Shan et al., “Detection of adulterants such as sweeteners materials in honey using near-infrared spectroscopy and chemometrics,” Journal of Food Engineering, vol. 101, no. 1, pp. 92–97, 2010.
[19]  D. Cozzolino, E. Corbella, and H. Smyth, “Quality control of honey using infrared spectroscopy: a review,” Applied Spectroscopy Reviews, vol. 46, no. 7, pp. 523–538, 2011.
[20]  L. Svecnjak, N. Biliskov, D. Bubalo, and D. Barisic, “Application of infrared spectroscopy in honey analysis,” Agriculturae Conspectus Scientificus, vol. 76, no. 3, pp. 191–195, 2011.
[21]  S. Hennessy, G. Downey, and C. P. O'Donnell, “Attempted confirmation of the provenance of corsican PDO honey using FT-IR spectroscopy and multivariate data analysis,” Journal of Agricultural and Food Chemistry, vol. 58, no. 17, pp. 9401–9406, 2010.
[22]  S. Sivakesava and J. Irudayaraj, “Classification of simple and complex sugar adulterants in honey by mid-infrared spectroscopy,” International Journal of Food Science and Technology, vol. 37, no. 4, pp. 351–360, 2002.
[23]  M. M. Paradkar, J. Irudayaraj, and S. Sakhamuri, “Discrimination and classification of beet and cane sugars and their inverts in maple syrup by FT-Raman,” Applied Engineering in Agriculture, vol. 18, no. 3, pp. 379–383, 2002.
[24]  H. Wang, Y. Q. Liu, H. M. Yang, Q. L. Guo, H. L. Shi, and L. B. Yan, “Determination of glucose, fructose, sucrose, maltose and lactose in sugar-free products by liquid chromatography-tandem mass spectrometry,” Chinese Journal of Analytical Chemistry, vol. 38, no. 6, pp. 873–876, 2010.
[25]  T. Gallardo-Velázquez, G. Osorio-Revilla, M. Z. D. Loa, and Y. Rivera-Espinoza, “Application of FTIR-HATR spectroscopy and multivariate analysis to the quantification of adulterants in Mexican honeys,” Food Research International, vol. 42, no. 3, pp. 313–318, 2009.
[26]  J. F. Cotte, H. Casabianca, J. Lhéritier et al., “Study and validity of 13C stable carbon isotopic ratio analysis by mass spectrometry and 2H site-specific natural isotopic fractionation by nuclear magnetic resonance isotopic measurements to characterize and control the authenticity of honey,” Analytica Chimica Acta, vol. 582, no. 1, pp. 125–136, 2007.
[27]  V. Mazzoni, P. Bradesi, F. Tomi, and J. Casanova, “Direct qualitative and quantitative analysis of carbohydrate mixtures using C-13 NMR spectroscopy: application to honey,” Magnetic Resonance in Chemistry, vol. 35, pp. S81–S90, 1997.
[28]  R. Consonni and L. R. Cagliani, “Geographical characterization of polyfloral and acacia honeys by nuclear magnetic resonance and chemometrics,” Journal of Agricultural and Food Chemistry, vol. 56, no. 16, pp. 6873–6880, 2008.
[29]  E. Schievano, E. Peggion, and S. Mammi, “H-1 nuclear magnetic resonance spectra of chloroform extracts of honey for chemometric determination of its botanical origin,” Journal of Agricultural and Food Chemistry, vol. 58, no. 1, pp. 57–65, 2010.
[30]  J. A. Donarski, S. A. Jones, and A. J. Charlton, “Application of cryoprobe H-1 nuclear magnetic resonance spectroscopy and multivariate analysis for the verification of corsican honey,” Journal of Agricultural and Food Chemistry, vol. 56, no. 14, pp. 5451–5456, 2008.
[31]  P. Sandusky and D. Raftery, “Use of selective TOCSY NMR experiments for quantifying minor components in complex mixtures: application to the metabonomics of amino acids in honey,” Analytical Chemistry, vol. 77, no. 8, pp. 2455–2463, 2005.
[32]  DIN 10752, Untersuchung von Honig; Bestimmung des Wassergehaltes, Refraktometrisches Verfahren, Berlin, Germany, 2012.
[33]  D. W. Lachenmeier, W. Frank, E. Humpfer et al., “Quality control of beer using high-resolution nuclear magnetic resonance spectroscopy and multivariate analysis,” European Food Research and Technology, vol. 220, no. 2, pp. 215–221, 2005.
[34]  R. A. van den Berg, H. C. J. Hoefsloot, J. A. Westerhuis, A. K. Smilde, and M. J. van der Werf, “Centering, scaling, and transformations: improving the biological information content of metabolomics data,” BMC Genomics, vol. 7, article 142, 2006.
[35]  M. Lolli, D. Bertelli, M. Plessi, A. G. Sabatini, and C. Restani, “Classification of Italian honeys by 2D HR-NMR,” Journal of Agricultural and Food Chemistry, vol. 56, no. 4, pp. 1298–1304, 2008.
[36]  P. Truchado, I. Martos, L. Bortolotti, A. G. Sabatini, F. Ferreres, and F. A. Tomas-Barberan, “Use of quinoline alkaloids as markers of the floral origin of chestnut honey,” Journal of Agricultural and Food Chemistry, vol. 57, no. 13, pp. 5680–5686, 2009.
[37]  G. Beretta, E. Caneva, L. Regazzoni, N. G. Bakhtyari, and R. Maffei Facino, “A solid-phase extraction procedure coupled to H-1 NMR, with chemometric analysis, to seek reliable markers of the botanical origin of honey,” Analytica Chimica Acta, vol. 620, no. 1-2, pp. 176–182, 2008.
[38]  D. Bertelli, M. Lolli, G. Papotti, L. Bortolotti, G. Serra, and M. Plessi, “Detection of honey adulteration by sugar syrups using one-dimensional and two-dimensional high-resolution nuclear magnetic resonance,” Journal of Agricultural and Food Chemistry, vol. 58, no. 15, pp. 8495–8501, 2010.
[39]  J. A. Donarski, D. P. T. Roberts, and A. J. Charlton, “Quantitative NMR spectroscopy for the rapid measurement of methylglyoxal in manuka honey,” Analytical Methods, vol. 2, no. 10, pp. 1479–1483, 2010.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133