全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Volcanic Ash versus Mineral Dust: Atmospheric Processing and Environmental and Climate Impacts

DOI: 10.1155/2013/245076

Full-Text   Cite this paper   Add to My Lib

Abstract:

This review paper contrasts volcanic ash and mineral dust regarding their chemical and physical properties, sources, atmospheric load, deposition processes, atmospheric processing, and environmental and climate effects. Although there are substantial differences in the history of mineral dust and volcanic ash particles before they are released into the atmosphere, a number of similarities exist in atmospheric processing at ambient temperatures and environmental and climate impacts. By providing an overview on the differences and similarities between volcanic ash and mineral dust processes and effects, this review paper aims to appeal for future joint research strategies to extend our current knowledge through close cooperation between mineral dust and volcanic ash researchers. 1. Introduction Volcanic ash represents a major product of volcanic eruptions [1–3]. It is formed by fragmentation processes of the magma and the surrounding rock material of volcanic vents [1, 4]. Depending on the strength of a volcanic eruption, volcanic ash is released into the free troposphere or even the stratosphere [1, 5], where it is transported by the prevailing winds until it is removed from the atmosphere by gravitational settling and wet deposition [6]. Volcanic ash is also known to be mobilised by wind from its deposits [7–12], which have accumulated after volcanic eruptions on land located along the main transport directions of the volcanic cloud, which spreads out over hundreds to thousands of kilometres, dependent on wind speed, ash size, ash density, and eruption magnitude. In contrast to atmospheric mineral dust, the importance of volcanic ash for climate has long been considered negligible [5]. The global mineral dust cycle and its interactions with the Earth’s climate system have been studied widely [13–18]. Mineral dust aerosols affect the radiative forcing of the atmosphere directly [13, 19] and indirectly by acting as cloud condensation or ice nuclei [20, 21]. Furthermore, mineral dust aerosols influence ozone photochemistry [22, 23] and supply nutrients to marine [24] and terrestrial ecosystems [25]. Vice versa, climate variability affects the mineral dust burden of the atmosphere through modifications of precipitation, vegetation cover, and wind [15]. This review contrasts the environmental and climatic effects of volcanic ash versus those of mineral dust. A stronger focus is put on the description of volcanic ash, whereas mineral dust effects are described in less detail, but with referencing the extensive literature. Similarities and differences will be

References

[1]  R. Sparks, M. Bursik, J. Gilbert, L. Glaze, H. Sigurdsson, and A. Woods, Volcanic Plumes, John Wiley, Chichester, UK, 1997.
[2]  W. I. Rose and A. J. Durant, “Fine ash content of explosive eruptions,” Journal of Volcanology and Geothermal Research, vol. 186, no. 1-2, pp. 32–39, 2009.
[3]  D. B. Dingwell, Y. Lavallée, and U. Kueppers, “Volcanic ash: a primary agent in the Earth system,” Physics and Chemistry of the Earth, vol. 45-46, pp. 2–4, 2012.
[4]  B. Zimanowski, K. Wohletz, P. Dellino, and R. Büttner, “The volcanic ash problem,” Journal of Volcanology and Geothermal Research, vol. 122, no. 1-2, pp. 1–5, 2003.
[5]  A. Robock, “Volcanic eruptions and climate,” Reviews of Geophysics, vol. 38, no. 2, pp. 191–219, 2000.
[6]  R. J. Brown, C. Bonadonna, and A. J. Durant, “A review of volcanic ash aggregation,” Physics and Chemistry of the Earth, vol. 45-46, pp. 65–78, 2012.
[7]  P. V. Hobbs, D. A. Hegg, and L. F. Radke, “Resuspension of volcanic ash from Mount St. Helens,” Journal of Geophysical Research, vol. 88, no. 6, pp. 3919–3921, 1983.
[8]  D. Hadley, G. L. Hufford, and J. J. Simpson, “Resuspension of relic volcanic ash and dust from katmai: still an aviation hazard,” Weather and Forecasting, vol. 19, pp. 829–840, 2004.
[9]  T. M. Wilson, J. W. Cole, C. Stewart, S. J. Cronin, and D. M. Johnston, “Ash storms: impacts of wind-remobilised volcanic ash on rural communities and agriculture following the 1991 Hudson eruption, southern Patagonia, Chile,” Bulletin of Volcanology, vol. 73, no. 3, pp. 223–239, 2011.
[10]  S. J. Leadbetter, M. C. Hort, S. Von Lwis, K. Weber, and C. S. Witham, “Modeling the resuspension of ash deposited during the eruption of Eyjafjallaj?kull in spring 2010,” Journal of Geophysical Research, vol. 117, no. D20, 2012.
[11]  T. Thorsteinsson, G. Gísladóttir, J. Bullard, and G. McTainsh, “Dust storm contributions to airborne particulate matter in Reykjavík, Iceland,” Atmospheric Environment, vol. 45, no. 32, pp. 5924–5933, 2011.
[12]  T. Thorsteinsson, T. Jóhannsson, A. Stohl, and N. I. Kristiansen, “High levels of particulate matter in Iceland due to direct ash emissions by the Eyjafjallaj?kull eruption and resuspension of deposited ash,” Journal of Geophysical Research B, vol. 117, no. B9, 2012.
[13]  I. Tegen and I. Fung, “Modeling of mineral dust in the atmosphere: sources, transport, and optical thickness,” Journal of Geophysical Research, vol. 99, no. D11, pp. 22897–22914, 1994.
[14]  J. M. Prospero, P. Ginoux, O. Torres, S. E. Nicholson, and T. E. Gill, “Environmental characterization of global sources of atmospheric soil dust identified with the Nimbus 7 Total Ozone Mapping Spectrometer (TOMS) absorbing aerosol product,” Reviews of Geophysics, vol. 40, no. 1, pp. 2-1–2-31, 2002.
[15]  T. D. Jickells, Z. S. An, K. K. Andersen et al., “Global iron connections between desert dust, ocean biogeochemistry, and climate,” Science, vol. 308, no. 5718, pp. 67–71, 2005.
[16]  N. M. Mahowald, A. R. Baker, G. Bergametti et al., “Atmospheric global dust cycle and iron inputs to the ocean,” Global Biogeochemical Cycles, vol. 19, no. 4, 2005.
[17]  Y. Shao, K.-H. Wyrwoll, A. Chappell et al., “Dust cycle: an emerging core theme in Earth system science,” Aeolian Research, vol. 2, no. 4, pp. 181–204, 2011.
[18]  M. Schulz, J. M. Prospero, A. R. Baker et al., “Atmospheric transport and deposition of mineral dust to the ocean: implications for research need,” Environmental Science and Technology, vol. 46, pp. 10390–10404, 2012.
[19]  N. Huneeus, M. Schulz, Y. Balkanski et al., “Global dust model intercomparison in AeroCom phase I,” Atmospheric Chemistry and Physics, vol. 11, no. 15, pp. 7781–7816, 2011.
[20]  D. Rosenfeld, Y. Rudich, and R. Lahav, “Desert dust suppressing precipitation: a possible desertification feedback loop,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 11, pp. 5975–5980, 2001.
[21]  P. Kumar, I. N. Sokolik, and A. Nenes, “Measurements of cloud condensation nuclei activity and droplet activation kinetics of fresh unprocessed regional dust samples and minerals,” Atmospheric Chemistry and Physics, vol. 11, no. 7, pp. 3527–3541, 2011.
[22]  F. J. Dentener, G. R. Carmichael, Y. Zhang, J. Lelieveld, and P. J. Crutzen, “Role of mineral aerosol as a reactive surface in the global troposphere,” Journal of Geophysical Research, vol. 101, no. D17, pp. 22869–22889, 1996.
[23]  S. E. Bauer, Y. Balkanski, M. Schulz, D. A. Hauglustine, and F. Dentener, “Global modeling of heterogenous chemistry on mineral aerosol surfaces: influence on tropospheric ozone chemistry and comparison to observations,” Journal of Geophysical Research, vol. 109, no. 2, p. D2, 2004.
[24]  J. H. Martin, “Glacial-interglacial CO2 change: the iron hypothesis,” Paleoceanography, vol. 5, no. 1, pp. 1–13, 1990.
[25]  I. Koren, Y. J. Kaufman, R. Washington et al., “The Bodélé depression: a single spot in the Sahara that provides most of the mineral dust to the Amazon forest,” Environmental Research Letters, vol. 1, no. 1, Article ID 014005, 2006.
[26]  J. G. Calvert, Glossary of Atmospheric Chemistry Terms, IUPAC, 1990.
[27]  G. Heiken, “Morphology and Petrography of volcanic ashes,” Geological Society of America Bulletin, vol. 83, pp. 1961–1988, 1972.
[28]  H. U. Schmincke, Volcanism, Springer, Berlin, Germany, 2004.
[29]  M. Nakagawa and T. Ohba, “Minerals in volcanic ash 1: primary minerals and volcanic glass,” Global Environmental Research, vol. 6, pp. 41–51, 2003.
[30]  Z. Shi, M. D. Krom, T. D. Jickels et al., “Impacts on iron solubility in the mineral dust by processes in the source region and the atmosphere: a review,” Aeolian Research, vol. 5, pp. 21–42, 2012.
[31]  P. Formenti, L. Schuetz, Y. Balkanski et al., “Recent progress in understanding physical and chemical properties of African and Asian mineral dust,” Atmospheric Chemistry and Physics, vol. 11, pp. 8231–8256, 2011.
[32]  B. Langmann, A. Folch, M. Hensch, and V. Matthias, “Volcanic ash over Europe during the eruption of Eyjafjallaj?kull on Iceland, April–May 2010,” Atmospheric Environment, vol. 48, pp. 1–8, 2012.
[33]  S. A. Colgate and T. Sigurgeirsson, “Dynamic mixing of water and lava,” Nature, vol. 244, no. 5418, pp. 552–555, 1973.
[34]  S. Dartevelle, G. G. J. Ernst, and A. Bernard, “Origin of the Mount Pinatubo climactic eruption cloud: implications for volcanic hazards and atmospheric impacts,” Geology, vol. 30, no. 7, pp. 663–666, 2002.
[35]  Y. H. Lee, K. Chen, and P. J. Adams, “Development of a global model of mineral dust aerosol microphysics,” Atmospheric Chemistry and Physics, vol. 9, no. 7, pp. 2441–2458, 2009.
[36]  T. M. Wilson, C. Stewart, V. Sword-Daniels et al., “Volcanic ash impacts on critical infrastructure,” Physics and Chemistry of the Earth, vol. 45-46, no. 5, 23 pages, 2012.
[37]  P. M. Ayris and P. Delmelle, “The immediate environmental effects of tephra emission,” Bulletin of Volcanology, vol. 74, pp. 1905–1936, 2012.
[38]  R. B. Symonds, W. I. Rose, G. J. S. Bluth, and T. M. Gerlach, “Volcanic gas studies: methods, results and applications,” in Volatiles in Magma, M. R. Caroll and J. R. Holloway, Eds., vol. 30, pp. 1–66, Reviews in Mineralogy and Geochemistry, 1994.
[39]  P. Delmelle, F. Villiéras, and M. Pelletier, “Surface area, porosity and water adsorption properties of fine volcanic ash particles,” Bulletin of Volcanology, vol. 67, no. 2, pp. 160–169, 2005.
[40]  S. Joussaume, “3-dimensional simulations of the atmospheric cycle of desert dust particles using a general-circulation model,” Journal of Geophysical Research, vol. 95, pp. 1909–1941, 1990.
[41]  N. Mahowald, K. Kohfeld, M. Hansson et al., “Dust sources and deposition during the last glacial maximum and current climate: a comparison of model results with paleodata from ice cores and marine sediments,” Journal of Geophysical Research, vol. 104, no. D13, pp. 15895–15916, 1999.
[42]  B. Marticorena and G. Bergametti, “Modeling the atmospheric dust cycle: 1. Design of a soil-derived dust emission scheme,” Journal of Geophysical Research, vol. 100, no. 8, pp. 16415–16430, 1995.
[43]  I. Tegen, M. Werner, S. P. Harrison, and K. E. Kohfeld, “Relative importance of climate and land use in determining present and future global soil dust emission,” Geophysical Research Letters, vol. 31, no. 5, 2004.
[44]  C. S. Zender, H. Bian, and D. Newman, “Mineral Dust Entrainment and Deposition (DEAD) model: description and 1990s dust climatology,” Journal of Geophysical Research, vol. 108, no. D14, 2003.
[45]  P. Formenti, J. L. Rajot, K. Desboeufs et al., “Airborne observations of mineral dust over western Africa in the summer Monsoon season: spatial and vertical variability of physico-chemical and optical properties,” Atmospheric Chemistry and Physics, vol. 11, no. 13, pp. 6387–6410, 2011.
[46]  C. G. Newhall and S. Self, “The volcanic explosivity index ( VEI): an estimate of explosive magnitude for historical volcanism,” Journal of Geophysical Research, vol. 87, no. C2, pp. 1231–1238, 1982.
[47]  T. Simkin and I. Siebert, Volcanoes of the World, Smithonian Institution; Geoscience Press, Misoula, Mont, USA, 1994.
[48]  T. A. Mather, D. M. Pyle, and C. Oppenheimer, “Tropospheric volcanic aerosol,” in Volcanism and the Earth’s Atmosphere, Geophysical Monograph, vol. 139, pp. 89–211, 2003.
[49]  B. Langmann, K. Zaksek, and M. Hort, “Atmospheric distribution and removal of volcanic ash after the eruption of Kasatochi volcano: a regional model study,” Journal of Geophysical Research, vol. 115, no. D2, 2010.
[50]  B. Marticorena, B. Chatenet, J. L. Rajot et al., “Temporal variability of mineral dust concentrations over West Africa: analyses of a pluriannual monitoring from the AMMA Sahelian Dust Transect,” Atmospheric Chemistry and Physics, vol. 10, no. 18, pp. 8899–8915, 2010.
[51]  M. Mikami, O. Abe, M. Du et al., “The impact of Aeolian dust on climate: sino-Japanese cooperative project ADEC,” Journal of Arid Land Studies, vol. 11, pp. 211–222, 2002.
[52]  C. Hoffmann, R. Funk, M. Sommer, and Y. Li, “Temporal variations in PM10 and particle size distribution during Asian dust storms in Inner Mongolia,” Atmospheric Environment, vol. 42, no. 36, pp. 8422–8431, 2008.
[53]  I. Chiapello, “Origins of African dust transported over the northeastern tropical Atlantic,” Journal of Geophysical Research, vol. 102, no. D12, pp. 13701–13709, 1997.
[54]  A. J. Prata and A. T. Prata, “Eyjafjallaj?kull volcanic ash concentrations determined using Spin enhanced visible and infrared imager measurements,” Journal of Geophysical Research, vol. 117, no. D20, 2012.
[55]  H. N. Webster, D. J. Thomson, B. T. Johnson et al., “Operational prediction of ash concentrations in the distal volcanic cloud from the 2010 Eyjafjallaj?kull eruption,” Journal of Geophysical Research D, vol. 117, no. D20, 2012.
[56]  J. H. Seinfeld and S. N. Pandis, Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, John Wiley, New York, NY, USA, 2006.
[57]  N. Olgun, S. Duggen, P. L. Croot et al., “Surface ocean iron fertilization: the role of airborne volcanic ash from subduction zone and hot spot volcanoes and related iron fluxes into the Pacific Ocean,” Global Biogeochemical Cycles, vol. 25, no. 4, 2011.
[58]  S. M. Straub and H. U. Schmincke, “Evaluating the tephra input into Pacific Ocean sediments: distribution in space and time,” Geologische Rundschau, vol. 87, no. 3, pp. 461–476, 1998.
[59]  S. Kutterolf, A. Freundt, U. Schacht et al., “Pacific offshore record of plinian arc volcanism in Central America: 3. Application to forearc geology,” Geochemistry, Geophysics, Geosystems, vol. 9, no. 2, 2008.
[60]  B. Langmann, K. Zak?ek, M. Hort, and S. Duggen, “Volcanic ash as fertiliser for the surface ocean,” Atmospheric Chemistry and Physics, vol. 10, no. 8, pp. 3891–3899, 2010.
[61]  D. M. Gaiero, J.-L. Probst, P. J. Depetris, S. M. Bidart, and L. Leleyter, “Iron and other transition metals in Patagonian riverborne and windborne materials: geochemical control and transport to the southern South Atlantic Ocean,” Geochimica et Cosmochimica Acta, vol. 67, no. 19, pp. 3603–3623, 2003.
[62]  W. I. Rose and A. J. Durant, “Fate of volcanic ash: aggregation and fallout,” Geology, vol. 39, no. 9, pp. 895–896, 2011.
[63]  A. J. Durant, W. I. Rose, A. M. Sarna-Wojcicki, S. Carey, and A. C. M. Volentik, “Hydrometeor-enhanced tephra sedimentation: constraints from the 18 May 1980 eruption of Mount St. Helens,” Journal of Geophysical Research, vol. 114, no. B3, 2009.
[64]  C. Bonadonna, R. Genco, M. Gouhier et al., “Tephra sedimentation during the 2010 Eyjafjallaj?kull eruption (Iceland) from deposit, radar, and satellite observations,” Journal of Geophysical Research, vol. 116, no. B12, 2011.
[65]  A. Folch, “A review of tephra transport and dispersal models: evolution, current status and future perspectives,” Journal of Volcanology and Geothermal Research, vol. 235, pp. 96–115, 2012.
[66]  C. Textor, H. F. Graf, C. Timmreck, and A. Robock, “Emissions from volcanoes,” in Emissions of Chemical Compounds and Aerosols in the Atmosphere, C. Granier, C. Reeves, and P. Artaxo, Eds., vol. 18 of Advances in Global Change Research, pp. 269–303, Kluwer, Dordrecht, The Netherlands, 2004.
[67]  L. G. Mastin, “A user-friendly one-dimensional model for wet volcanic plumes,” Geochemistry, Geophysics, Geosystems, vol. 8, no. 3, 2007.
[68]  M. R. James, L. Wilson, S. J. Lane et al., “Electrical charging of volcanic plumes,” Space Science Reviews, vol. 137, no. 1–4, pp. 399–418, 2008.
[69]  S. R. McNutt and E. R. Williams, “Volcanic lightning: global observations and constraints on source mechanisms,” Bulletin of Volcanology, vol. 72, no. 10, pp. 1153–1167, 2010.
[70]  W. I. Rose, “Scavenging of volcanic aerosol by ash: atmospheric and volcanologic implications,” Geology, vol. 5, pp. 621–624, 1977.
[71]  N. Oskarsson, “The interaction between volcanic gases and tephra: fluorine adhering to tephra of the 1970 Hekla eruption,” Journal of Volcanology & Geothermal Research, vol. 8, no. 2–4, pp. 251–266, 1980.
[72]  E. Bagnato, A. Aiuppa, A. Bertagnini et al., “Scavenging of sulphur, halogens and trace metals by volcanic ash: the 2010 Eyjafjallaj?kull eruption,” Geochimica Et Cosmochimica Acta, vol. 103, pp. 138–160, 2013.
[73]  J. M. de Moor, T. P. Fischer, D. R. Hilton, E. Hauri, L. A. Jaffe, and J. T. Camacho, “Degassing at Anatahan volcano during the May 2003 eruption: implications from petrology, ash leachates, and SO2 emissions,” Journal of Volcanology and Geothermal Research, vol. 146, no. 1–3, pp. 117–138, 2005.
[74]  C. S. Witham, C. Oppenheimer, and C. J. Horwell, “Volcanic ash-leachates: a review and recommendations for sampling methods,” Journal of Volcanology and Geothermal Research, vol. 141, no. 3-4, pp. 299–326, 2005.
[75]  P. Frogner, S. R. Gíslason, and N. óskarsson, “Fertilizing potential of volcanic ash in ocean surface water,” Geology, vol. 29, no. 6, pp. 487–490, 2001.
[76]  S. Duggen, P. Croot, U. Schacht, and L. Hoffmann, “Subduction zone volcanic ash can fertilize the surface ocean and stimulate phytoplankton growth: evidence from biogeochemical experiments and satellite data,” Geophysical Research Letters, vol. 34, no. 1, Article ID L01612, 2007.
[77]  S. Duggen, N. Olgun, P. Croot et al., “The role of airborne volcanic ash for the surface ocean biogeochemical iron-cycle: a review,” Biogeosciences, vol. 7, no. 3, pp. 827–844, 2010.
[78]  P. S. Taylor and R. E. Stoiber, “Soluble material on ash from active Central American volcanoes,” Geological Society of America Bulletin, vol. 84, pp. 1031–1042, 1973.
[79]  D. B. Smith, R. A. Zielinski, W. I. Rose Jr., and B. J. Huebert, “Water-soluble material on aerosols collected within volcanic eruption clouds (Fuego, Pacaya, Santiaguito, Guatamala),” Journal of Geophysical Research, vol. 87, no. 7, pp. 4963–4972, 1982.
[80]  P. Delmelle, M. Lambert, Y. Dufrêne, P. Gerin, and N. óskarsson, “Gas/aerosol-ash interaction in volcanic plumes: new insights from surface analyses of fine ash particles,” Earth and Planetary Science Letters, vol. 259, no. 1-2, pp. 159–170, 2007.
[81]  P. M. Ayris, A. F. Lee, K. Wilson, U. Kueppers, D. B. Dingwell, and P. Delmelle, “SO2 sequestration in large volcanic eruptions: high-temperature scavenging by tephra,” Geochimica Et Cosmochimica Acta, vol. 110, pp. 58–69, 2013.
[82]  C. Textor, H. F. Graf, M. Herzog, J. M. Oberhuber, W. I. Rose, and G. G. J. Ernst, “Volcanic particle aggregation in explosive eruption columns. Part I: parameterization of the microphysics of hydrometeors and ash,” Journal of Volcanology and Geothermal Research, vol. 150, no. 4, pp. 359–377, 2006.
[83]  P. Ayris and P. Delmelle, “Volcanic and atmospheric controls on ash iron solubility: a review,” Physics and Chemistry of the Earth, vol. 45-46, pp. 103–112, 2012.
[84]  M. M. Halmer, H.-U. Schmincke, and H.-F. Graf, “The annual volcanic gas input into the atmosphere, in particular into the stratosphere: a global data set for the past 100 years,” Journal of Volcanology and Geothermal Research, vol. 115, no. 3-4, pp. 511–528, 2002.
[85]  C. Gao, A. Robock, and C. Ammann, “Volcanic forcing of climate over the past 1500 years: an improved ice core-based index for climate models,” Journal of Geophysical Research, vol. 113, no. D23, 2008.
[86]  N. Meskhidze, W. L. Chameides, A. Nenes, and G. Chen, “Iron mobilization in mineral dust: can anthropogenic SO2 emissions affect ocean productivity?” Geophysical Research Letters, vol. 30, no. 21, 2003.
[87]  J. Fero, S. N. Carey, and J. T. Merrill, “Simulating the dispersal of tephra from the 1991 Pinatubo eruption: implications for the formation of widespread ash layers,” Journal of Volcanology and Geothermal Research, vol. 186, no. 1-2, pp. 120–131, 2009.
[88]  M. Ullerstam, R. Vogt, S. Langer, and E. Ljungstr?m, “The kinetics and mechanism of SO2 oxidation by O3 on mineral dust,” Physical Chemistry Chemical Physics, vol. 4, no. 19, pp. 4694–4699, 2002.
[89]  M. Ndour, P. Conchon, B. D'Anna, O. Ka, and C. George, “Photochemistry of mineral dust surface as a potential atmospheric renoxification process,” Geophysical Research Letters, vol. 36, no. 5, 2009.
[90]  R. C. Sullivan, S. A. Guazzotti, D. A. Sodeman, and K. A. Prather, “Direct observations of the atmospheric processing of Asian mineral dust,” Atmospheric Chemistry and Physics, vol. 7, no. 5, pp. 1213–1236, 2007.
[91]  Y. Dupart, S. M. King, B. Nekat et al., “Mineral dust photochemistry induces nucleation events in the presence of SO2,” Proceedings of the National Academy of Science of the United States of America, vol. 109, pp. 20842–20847, 2012.
[92]  S. Wurzler, T. G. Reisin, and Z. Levin, “Modification of mineral dust particles by cloud processing and subsequent effects on drop size distributions,” Journal of Geophysical Research D, vol. 105, no. D4, pp. 4501–4512, 2000.
[93]  D. S. Mackie, P. W. Boyd, K. A. Hunter, and G. H. McTainsh, “Simulating the cloud processing of iron in Australian dust: pH and dust concentration,” Geophysical Research Letters, vol. 32, no. 6, 2005.
[94]  A. Matsuki, A. Schwarzenboeck, H. Venzac, P. Laj, S. Crumeyrolle, and L. Gomes, “Cloud processing of mineral dust: direct comparison of cloud residual and clear sky particles during AMMA aircraft campaign in summer 2006,” Atmospheric Chemistry and Physics, vol. 10, no. 3, pp. 1057–1069, 2010.
[95]  H. Bingemer, H. Klein, M. Ebert et al., “Atmospheric ice nuclei in the Eyjafjallaj?kull volcanic ash plume,” Atmospheric Chemistry and Physics, vol. 12, pp. 857–867, 2012.
[96]  F. Solmon, P. Y. Chuang, N. Meskhidze, and Y. Chen, “Acidic processing of mineral dust iron by anthropogenic compounds over the north Pacific Ocean,” Journal of Geophysical Research, vol. 114, no. D2, 2009.
[97]  A. R. Baker and P. L. Croot, “Atmospheric and marine controls on aerosol iron solubility in seawater,” Marine Chemistry, vol. 120, no. 1–4, pp. 4–13, 2010.
[98]  N. Meskhidze, W. L. Chameides, and A. Nenes, “Dust and pollution: a recipe for enhanced ocean fertilization?” Journal of Geophysical Research D, vol. 110, no. D3, 2005.
[99]  D. Jeong, K. Kim, and W. Choi, “Accelerated dissolution of iron oxides in ice,” Atmospheric Chemistry and Physics, vol. 12, pp. 11125–11133, 2012.
[100]  A. J. Durant, R. A. Shaw, W. I. Rose, Y. Mi, and G. G. J. Ernst, “Ice nucleation and overseeding of ice in volcanic clouds,” Journal of Geophysical Research, vol. 113, no. D9, 2008.
[101]  Z. Shi, D. Zhang, M. Hayashi, H. Ogata, H. Ji, and W. Fujiie, “Influences of sulfate and nitrate on the hygroscopic behaviour of coarse dust particles,” Atmospheric Environment, vol. 42, no. 4, pp. 822–827, 2008.
[102]  T. L. Lathem, P. Kumar, A. Nenes et al., “Hygroscopic properties of volcanic ash,” Geophysical Research Letters, vol. 38, no. 11, Article ID L11802, 2011.
[103]  R. A. Dahlgren, F. C. Uoolim, and W. H. Casey, “Field weathering rates of Mt. St. Helens tephra,” Geochimica et Cosmochimica Acta, vol. 63, no. 5, pp. 587–598, 1999.
[104]  A. F. White and S. L. Brantley, “Chemical weathering rates of silicate minerals: an overview,” Reviews in Mineralogy and Geochemistry, vol. 31, pp. 1–22, 1995.
[105]  J.-I. Jeong and S.-U. Park, “Interaction of gaseous pollutants with aerosols in Asia during March 2002,” Science of the Total Environment, vol. 392, no. 2-3, pp. 262–276, 2008.
[106]  H. Yuan, G. Zhuang, J. Li, Z. Wang, and J. Li, “Mixing of mineral with pollution aerosols in dust season in Beijing: revealed by source apportionment study,” Atmospheric Environment, vol. 42, no. 9, pp. 2141–2157, 2008.
[107]  IPCC (International Panel of Climate Change), Fourth Assessment Report: Climate Change, 2007.
[108]  C. J. Horwell and P. J. Baxter, “The respiratory health hazards of volcanic ash: a review for volcanic risk mitigation,” Bulletin of Volcanology, vol. 69, no. 1, pp. 1–24, 2006.
[109]  M. G. Dunn, A. J. Baran, and J. Miatech, “Operation of gas turbine engines in volcanic ash clouds,” Journal of Engineering for Gas Turbines and Power, vol. 118, no. 4, pp. 724–731, 1996.
[110]  M. Guffanti, T. J. Casadevall, and K. Budding, “1953–2009: Encounters of Aircraft with Volcanic Ash Clouds, A Compilation of Known Incidents,” U.S. Geological Survey Data Series 545, 12 p., Plus 4 Appendixes Including the Compilation Database, 2010, http://pubs.usgs.gov/ds/545/.
[111]  B. Weinzierl, D. Sauer, A. Minikin et al., “On the visibility of airborne volcanic ash and mineral dust from the pilot’s perspective in flight,” Physics and Chemistry of the Earth, vol. 45-46, pp. 87–102, 2012.
[112]  R. J. Cook, J. C. Barron, R. I. Papendick, and G. J. Williams III, “Impact on agriculture of the Mount St. Helens eruptions,” Science, vol. 211, no. 4477, pp. 16–22, 1981.
[113]  C. Mass and A. Robock, “The short-term influence of the Mount St. Helens volcanic eruption on surface temperature in the northwest United States ( Idaho, Montana),” Monthly Weather Review, vol. 110, no. 6, pp. 614–622, 1982.
[114]  M. T. Jones, R. S. J. Sparks, and P. J. Valdes, “The climatic impact of supervolcanic ash blankets,” Climate Dynamics, vol. 29, no. 6, pp. 553–564, 2007.
[115]  Y. J. Kaufman, D. Tanré, O. Dubovik, A. Karnieli, and L. A. Remer, “Absorption of sunlight by dust as inferred from satellite and ground-based remote sensing,” Geophysical Research Letters, vol. 28, no. 8, pp. 1479–1482, 2001.
[116]  H. E. Redmond, K. D. Dial, and J. E. Thompson, “Light scattering and absorption by wind blown dust: theory, measurement, and recent data,” Aeolian Research, vol. 2, no. 1, pp. 5–26, 2010.
[117]  J. S. Reid, H. H. Jonsson, H. B. Maring et al., “Comparison of size and morphological measurements of coarse mode dust particles from Africa,” Journal of Geophysical Research, vol. 108, no. D19, 2003.
[118]  S. Gro?, V. Freudenthaler, M. Wiegner, J. Gasteiger, A. Gei?, and F. Schnell, “Dual-wavelength linear depolarization ratio of volcanic aerosols: lidar measurements of the Eyjafjallaj?kull plume over Maisach, Germany,” Atmospheric Environment, vol. 48, pp. 85–96, 2012.
[119]  S. E. Bauer, M. I. Mishchenko, A. A. Lacis, S. Zhang, J. Perlwitz, and S. M. Metzger, “Do sulfate and nitrate coatings on mineral dust have important effects on radiative properties and climate modeling?” Journal of Geophysical Research, vol. 112, no. D6, 2007.
[120]  U. Lohmann and J. Feichter, “Global indirect aerosol effects: a review,” Atmospheric Chemistry and Physics, vol. 5, no. 3, pp. 715–737, 2005.
[121]  S. Twomey, “The influence of pollution on the shortwave albedo of clouds,” Journal of Atmospheric Sciences, vol. 34, pp. 1149–1152, 1977.
[122]  B. A. Albrecht, “Aerosols, cloud microphysics, and fractional cloudiness,” Science, vol. 245, no. 4923, pp. 1227–1230, 1989.
[123]  S. Gasso, “Satellite observations of the impact of weak volcanic activity on marine clouds,” Journal of Geophysical Research, vol. 113, no. D14, 2008.
[124]  F. J. Nober, H.-F. Graf, and D. Rosenfeld, “Sensitivity of the global circulation to the suppression of precipitation by anthropogenic aerosols,” Global and Planetary Change, vol. 37, no. 1-2, pp. 57–80, 2003.
[125]  H. R. Pruppacher and J. D. Klett, Microphysics of Clouds and Precipitation, Kluwer, Dordrecht, The Netherlands, 2nd edition, 1997.
[126]  W. Szyrmer and I. Zawadzki, “Biogenic and anthropogenic sources of ice-forming nuclei: a review,” Bulletin of the American Meteorological Society, vol. 78, no. 2, pp. 209–228, 1997.
[127]  K. Diehl, C. Quick, S. Matthias-Maser, S. K. Mitra, and R. Jaenicke, “The ice nucleating ability of pollen Part I: laboratory studies in deposition and condensation freezing modes,” Atmospheric Research, vol. 58, no. 2, pp. 75–87, 2001.
[128]  K. Diehl, S. Matthias-Maser, R. Jaenicke, and S. K. Mitra, “The ice nucleating ability of pollen: Part II. Laboratory studies in immersion and contact freezing modes,” Atmospheric Research, vol. 61, no. 2, pp. 125–133, 2002.
[129]  P. J. DeMott, K. Sassen, M. R. Poellot et al., “African dust aerosols as atmospheric ice nuclei,” Geophysical Research Letters, vol. 30, no. 14, 2003.
[130]  P. Seifert, A. Ansmann, S. Gro? et al., “Ice formation in ash-influenced clouds after the eruption of the Eyjafjallaj?kull volcano in April 2010,” Journal of Geophysical Research, vol. 116, no. D20, 2011.
[131]  Y.-S. Choi, R. S. Lindzen, C.-H. Ho, and J. Kim, “Space observations of cold-cloud phase change,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 25, pp. 11211–11216, 2010.
[132]  P. W. Boyd and M. J. Ellwood, “The biogeochemical cycle of iron in the ocean,” Nature Geoscience, vol. 3, no. 10, pp. 675–682, 2010.
[133]  L. Bopp, K. E. Kohfeld, C. Le Quéré, and O. Aumont, “Dust impact on marine biota and atmospheric CO2 during glacial periods,” Paleoceanography, vol. 18, no. 2, 2003.
[134]  R. R?thlisberger, M. Bigler, E. W. Wolff, F. Joos, E. Monnin, and M. A. Hutterli, “Ice core evidence for the extent of past atmospheric CO2 change due to iron fertilisation,” Geophysical Research Letters, vol. 31, no. 16, 2004.
[135]  F. Lambert, B. Delmonte, J. R. Petit et al., “Dust—climate couplings over the past 800,000 years from the EPICA Dome C ice core,” Nature, vol. 452, no. 7187, pp. 616–619, 2008.
[136]  J. K. B. Bishop, R. E. Davis, and J. T. Sherman, “Robotic observations of dust storm enhancement of carbon biomass in the North Pacific,” Science, vol. 298, no. 5594, pp. 817–821, 2002.
[137]  P. W. Boyd, C. S. Wong, J. Merrill et al., “Atmospheric iron supply and enhanced vertical carbon flux in the NE subarctic Pacific: is there a connection?” Global Biogeochemical Cycles, vol. 12, no. 3, pp. 429–441, 1998.
[138]  A. Martínez-Garcia, A. Rosell-Melé, W. Geibert et al., “Links between iron supply, marine productivity, sea surface temperature, and CO2 over the last 1.1 Ma,” Paleoceanography, vol. 24, no. 1, 2009.
[139]  B. A. Maher, J. M. Prospero, D. Mackie, D. Gaiero, P. P. Hesse, and Y. Balkanski, “Global connections between aeolian dust, climate and ocean biogeochemistry at the present day and at the last glacial maximum,” Earth-Science Reviews, vol. 99, no. 1-2, pp. 61–97, 2010.
[140]  L. J. Hoffmann, E. Breitbarth, M. V. Ardelan et al., “Influence of trace metal release from volcanic ash on growth of Thalassiosira pseudonana and Emiliania huxleyi,” Marine Chemistry, vol. 132-133, pp. 28–33, 2012.
[141]  E. P. Achterberg, C. M. Moore, A. Henson et al., “Natural iron fertilization by the Eyjafjallaj?kull volcanic eruption,” Geophysical Research Letters, vol. 40, no. 5, pp. 921–926, 2013.
[142]  M. T. Jones and S. R. Gislason, “Rapid releases of metal salts and nutrients following the deposition of volcanic ash into aqueous environments,” Geochimica et Cosmochimica Acta, vol. 72, no. 15, pp. 3661–3680, 2008.
[143]  R. C. Hamme, P. W. Webley, W. R. Crawford et al., “Volcanic ash fuels anomalous plankton bloom in subarctic northeast Pacific,” Geophysical Research Letters, vol. 37, no. 19, Article ID L19604, 2010.
[144]  D. Lockwood, P. D. Quay, M. T. Kavanaugh, L. W. Juranek, and R. A. Feely, “High-resolution estimates of net community production and air-sea CO2 flux in the northeast Pacific,” Global Biogeochemical Cycles, vol. 26, no. 4, 2012.
[145]  A. Lindenthal, B. Langmann, J. Paetsch, I. Lorkorwski, and M. Hort, “The ocean response to volcanic iron fertilization after the eruption of Kasatochi volcano: a regional biogeochemical model study,” Biogeosciences, vol. 10, pp. 3715–3729, 2013.
[146]  T. R. Parsons and F. A. Whitney, “Did volcanic ash from Mt. Kasatochi in 2008 contribute to a phenomenal increase in Fraser River sockeye salmon (Oncohynchus nerka) in 2010?” Fishery Oceanography, vol. 21, pp. 374–377, 2012.
[147]  S. McKinnell, “Challenges for the Kasatochi volcano hypothesis as the cause of a large return of sockeye salmon (Oncorhynchus nerka) to the Fraser River in 2010,” Fisheries Oceanography, 2013.
[148]  B. R. Jicha, D. W. Scholl, and D. K. Rea, “Circum-Pacific arc flare-ups and global cooling near the Eocene-Oligocene boundary,” Geology, vol. 37, no. 4, article 303, 2009.
[149]  S. M. Cather, N. W. Dunbar, F. W. McDowell, W. C. McIntosh, and P. A. Scholle, “Climate forcing by iron fertilization from repeated ignimbrite eruptions: the icehouse-silicic large igneous province (SLIP) hypothesis,” Geosphere, vol. 5, no. 3, pp. 315–324, 2009.
[150]  R. C. Bay, N. Bramall, and P. B. Price, “Bipolar correlation of volcanism with millennial climate change,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 17, pp. 6341–6345, 2004.
[151]  R. C. Bay, N. E. Bramall, P. B. Price et al., “Globally synchronous ice core volcanic tracers and abrupt cooling during the last glacial period,” Journal of Geophysical Research, vol. 111, no. D11, 2006.
[152]  S. Bains, R. D. Norris, R. M. Corfield, and K. L. Faul, “Termination of global warmth at the Palaeocene/Eocene boundary through productivity feedback,” Nature, vol. 407, no. 6801, pp. 171–174, 2000.
[153]  P. Censi, L. A. Randazzo, P. Zuddas, F. Saiano, P. Aricò, and S. Andò, “Trace element behaviour in seawater during Etna's pyroclastic activity in 2001: concurrent effects of nutrients and formation of alteration minerals,” Journal of Volcanology and Geothermal Research, vol. 193, no. 1-2, pp. 106–116, 2010.
[154]  J. L. Sarmiento, “Atmospheric CO2 stalled,” Nature, vol. 365, no. 6448, pp. 697–698, 1993.
[155]  A. J. Watson, “Volcanic iron, CO2, ocean productivity and climate,” Nature, vol. 385, no. 6617, pp. 587–588, 1997.
[156]  L. M. Mercado, N. Bellouin, S. Sitch et al., “Impact of changes in diffuse radiation on the global land carbon sink,” Nature, vol. 458, no. 7241, pp. 1014–1017, 2009.
[157]  R. A. Scasso, H. Corbella, and P. Tiberi, “Sedimentological analysis of the tephra from the 12–15 August 1991 eruption of Hudson volcano,” Bulletin of Volcanology, vol. 56, no. 2, pp. 121–132, 1994.
[158]  S. L. De Silva and G. A. Zielinski, “Global influence of the AD 1600 eruption of Huaynaputina, Peru,” Nature, vol. 393, no. 6684, pp. 455–458, 1998.
[159]  C. MacFarling Meure, D. Etheridge, C. Trudinger et al., “Law dome CO2, CH4 and NCO2O ice core records extended to 2000 years BP,” Geophysical Research Letters, vol. 33, no. 14, 2006.
[160]  C. D. O'Dowd, M. C. Facchini, F. Cavalli et al., “Biogenically driven organic contribution to marine aerosol,” Nature, vol. 431, no. 7009, pp. 676–680, 2004.
[161]  P. Liss, A. Chuck, D. Bakker, and S. Turner, “Ocean fertilization with iron: effects on climate and air quality,” Tellus B, vol. 57, no. 3, pp. 269–271, 2005.
[162]  C. Bonadonna and A. Foch, “Ash Dispersal Forecast and Civil Aviation Workshop—Consensual Document,” 2011, https://vhub.org/resources/503.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133