全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Neuronal Nicotinic Receptors in Sleep-Related Epilepsy: Studies in Integrative Biology

DOI: 10.5402/2012/262941

Full-Text   Cite this paper   Add to My Lib

Abstract:

Although Mendelian diseases are rare, when considered one by one, overall they constitute a significant social burden. Besides the medical aspects, they propose us one of the most general biological problems. Given the simplest physiological perturbation of an organism, that is, a single gene mutation, how do its effects percolate through the hierarchical biological levels to determine the pathogenesis? And how robust is the physiological system to this perturbation? To solve these problems, the study of genetic epilepsies caused by mutant ion channels presents special advantages, as it can exploit the full range of modern experimental methods. These allow to extend the functional analysis from single channels to whole brains. An instructive example is autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE), which can be caused by mutations in neuronal nicotinic acetylcholine receptors. In vitro, such mutations often produce hyperfunctional receptors, at least in heterozygous condition. However, understanding how this leads to sleep-related frontal epilepsy is all but straightforward. Several available animal models are helping us to determine the effects of ADNFLE mutations on the mammalian brain. Because of the complexity of the cholinergic regulation in both developing and mature brains, several pathogenic mechanisms are possible, which also present different therapeutic implications. 1. Introduction Strictly speaking, expressions like “integrative biology” or “system biology” are pleonastic, as the essence of biological processes is the interplay of many elements, even in unicellular organisms. Such locutions serve nonetheless to remind us that fully explaining physiological and pathological processes requires taking into account the organism context, which is easy to forget in a time that offers very powerful molecular methods. The pathogenesis of any disease is determined by a concourse of genetic, environmental, and developmental factors that produce their effects in a setting characterized by continuous interplay between cell groups, tissues, and organs. Understanding the conditions that predispose an individual to undergo such a course of events is thus a central problem of biology. Adopting a pathophysiological standpoint should considerably facilitate the task of gaining better integrative insight, because the experimental evidence related to pathology greatly exceeds the results available in other fields devoted to the organism biology. Therefore, although it seems unlikely that these issues will ever turn out to present general

References

[1]  C. A. R. Boyd and D. Noble, Eds., Logic of Life. the Challenge of Integrative Physiology, Oxford University Press, New York, NY, USA, 1993.
[2]  O. K. Steinlein, “Genetic mechanisms that underlie epilepsy,” Nature Reviews Neuroscience, vol. 5, no. 5, pp. 400–408, 2004.
[3]  D. M. Kullmann and S. G. Waxman, “Neurological channelopathies: new insights into disease mechanisms and ion channel function,” Journal of Physiology, vol. 588, no. 11, pp. 1823–1827, 2010.
[4]  R. Dingledine, “Glutamatergic mechanisms related to epilepsy,” in Jasper’s Basic Mechanisms of the Epilepsies, J. L. Noebels, M. Avoli, M. A. Rogawski, R. W. Olsen, and A. V. Delgado-Escueta, Eds., pp. 122–131, Oxford University Press, New York, NY, USA, 4th edition, 2012.
[5]  O. K. Steinlein, J. C. Mulley, P. Propping et al., “A missense mutation in the neuronal nicotinic acetylcholine receptor α4 subunit is associated with autosomal dominant nocturnal frontal lobe epilepsy,” Nature Genetics, vol. 11, no. 2, pp. 201–203, 1995.
[6]  E. O. Mann and I. Mody, “The multifaceted role of inhibition in epilepsy: seizure-genesis through excessive GABAergic inhibition in autosomal dominant nocturnal frontal lobe epilepsy,” Current Opinion in Neurology, vol. 21, no. 2, pp. 155–160, 2008.
[7]  P. S. Miller and T. G. Smart, “Binding, activation and modulation of Cys-loop receptors,” Trends in Pharmacological Sciences, vol. 31, no. 4, pp. 161–174, 2010.
[8]  A. J. Thompson, H. A. Lester, and S. C. R. Lummis, “The structural basis of function in Cys-loop receptors,” Quarterly Reviews of Biophysics, vol. 43, no. 4, pp. 449–499, 2010.
[9]  I. Wessler and C. J. Kirkpatrick, “Acetylcholine beyond neurons: the non-neuronal cholinergic system in humans,” British Journal of Pharmacology, vol. 154, no. 8, pp. 1558–1571, 2008.
[10]  S. Z. Young and A. Bordey, “GABA's control of stem and cancer cell proliferation in adult neural and peripheral niches,” Physiology, vol. 24, no. 3, pp. 171–185, 2009.
[11]  P. Ambrosi and A. Becchetti, “Targeting neuronal nicotinic receptors in cancer: new ligands and potential side-effects,” Recent Patents on Anti-Cancer Drug Discovery, vol. 8, no. 1, pp. 38–52, 2013.
[12]  E. X. Albuquerque, E. F. R. Pereira, M. Alkondon, and S. W. Rogers, “Mammalian nicotinic acetylcholine receptors: from structure to function,” Physiological Reviews, vol. 89, no. 1, pp. 73–120, 2009.
[13]  J. Lindstrom, “Purification and cloning of nicotinic acetylcholine receptors,” in Neuronal Nicotinic Receptors. Pharmacology and Therapeutic Opportunities, S. P. Arneric and J. D. Brioni, Eds., pp. 3–24, John Wiley and Sons, New York, NY, USA, 1999.
[14]  A. Karlin, “Emerging structure of the nicotinic acetylcholine receptors,” Nature Reviews Neuroscience, vol. 3, no. 2, pp. 102–114, 2002.
[15]  J. A. Dani and D. Bertrand, “Nicotinic acetylcholine receptors and nicotinic cholinergic mechanisms of the central nervous system,” Annual Review of Pharmacology and Toxicology, vol. 47, pp. 699–729, 2007.
[16]  S. S. Khiroug, P. C. Harkness, P. W. Lamb et al., “Rat nicotinic ACh receptor α7 and β2 subunits co-assemble to form functional heteromeric nicotinic receptor channels,” Journal of Physiology, vol. 540, no. 2, pp. 425–434, 2002.
[17]  T. A. Murray, D. Bertrand, R. L. Papke, et al., “α7β2 nicotinic acetylcholine receptors assemble, function, and are activated primarily via their α7-α7 interfaces,” Molecular Pharmacology, vol. 81, no. 2, pp. 175–188, 2012.
[18]  C. Gotti, M. Zoli, and F. Clementi, “Brain nicotinic acetylcholine receptors: native subtypes and their relevance,” Trends in Pharmacological Sciences, vol. 27, no. 9, pp. 482–491, 2006.
[19]  J. Ramirez-Latorre, C. R. Yu, X. Qu, F. Perin, A. Karlin, and L. Role, “Functional contributions of α5 subunit to neuronal acetylcholine receptor channels,” Nature, vol. 380, no. 6572, pp. 347–351, 1996.
[20]  Z. Y. Han, N. Le Novère, M. Zoli, J. A. Hill, N. Champtiaux, and J. P. Changeux, “Localization of nAChR subunit mRNAs in the brain of Macaca mulatta,” European Journal of Neuroscience, vol. 12, no. 10, pp. 3664–3674, 2000.
[21]  P. Aridon, C. Marini, C. D. Resta et al., “Increased sensitivity of the neuronal nicotinic receptor α2 subunit causes familial epilepsy with nocturnal wandering and ictal fear,” American Journal of Human Genetics, vol. 79, no. 2, pp. 342–350, 2006.
[22]  K. Ishii, J. K. Wong, and K. Sumikawa, “Comparison of α2 nicotinic acetylcholine receptor subunit mRNA expression in the central nervous system of rats and mice,” Journal of Comparative Neurology, vol. 493, no. 2, pp. 241–260, 2005.
[23]  M. Quik, Y. Polonskaya, A. Gillespie, M. Jakowec, G. K. Lloyd, and J. W. Langston, “Localization of nicotinic receptor subunit mRNAs in monkey brain by in situ hybridization,” Journal of Comparative Neurology, vol. 425, no. 1, pp. 58–69, 2000.
[24]  L. C. Gahring, K. Persiyanov, and S. W. Rogers, “Neuronal and astrocyte expression of nicotinic receptor subunit β4 in the adult mouse brain,” Journal of Comparative Neurology, vol. 468, no. 3, pp. 322–333, 2004.
[25]  E. Hellstr?m-Lindahl, O. Gorbounova, ?. Seiger, M. Mousavi, and A. Nordberg, “Regional distribution of nicotinic receptors during prenatal development of human brain and spinal cord,” Developmental Brain Research, vol. 108, no. 1-2, pp. 147–160, 1998.
[26]  C. Gotti, F. Clementi, A. Fornari et al., “Structural and functional diversity of native brain neuronal nicotinic receptors,” Biochemical Pharmacology, vol. 78, no. 7, pp. 703–711, 2009.
[27]  N. Unwin, “Refined structure of the nicotinic acetylcholine receptor at 4?? resolution,” Journal of Molecular Biology, vol. 346, no. 4, pp. 967–989, 2005.
[28]  A. Miyazawa, Y. Fujiyoshi, and N. Unwin, “Structure and gating mechanism of the acetylcholine receptor pore,” Nature, vol. 423, no. 6943, pp. 949–955, 2003.
[29]  S. J. Moss, B. J. McDonald, Y. Rudhard, and R. Schoepfer, “Phosphorylation of the predicted major intracellular domains of the rat and chick neuronal nicotinic acetylcholine receptor α7 subunit by cAMP-dependent protein kinase,” Neuropharmacology, vol. 35, no. 8, pp. 1023–1028, 1996.
[30]  L. Wecker, X. Guo, A. M. Rycerz, and S. C. Edwards, “Cyclic AMP-dependent protein kinase (PKA) and protein kinase C phosphorylate sites in the amino acid sequence corresponding to the M3/M4 cytoplasmic domain of α4 neuronal nicotinic receptor subunits,” Journal of Neurochemistry, vol. 76, no. 3, pp. 711–720, 2001.
[31]  V. Tsetlin, D. Kuzmin, and I. Kasheverov, “Assembly of nicotinic and other Cys-loop receptors,” Journal of Neurochemistry, vol. 116, no. 5, pp. 734–741, 2011.
[32]  O. S. Andersen and R. E. Koeppe, “Molecular determinants of channel function,” Physiological Reviews, vol. 72, supplement 4, pp. S89–S158, 1992.
[33]  S. Fucile, “Ca2+ permeability of nicotinic acetylcholine receptors,” Cell Calcium, vol. 35, no. 1, pp. 1–8, 2004.
[34]  P. J. O. Covernton and J. G. Connolly, “Multiple components in the agonist concentration-response relationships of neuronal nicotinic acetylcholine receptors,” Journal of Neuroscience Methods, vol. 96, no. 1, pp. 63–70, 2000.
[35]  B. Buisson and D. Bertrand, “Chronic exposure to nicotine upregulates the human α4β2 nicotinic acetylcholine receptor function,” Journal of Neuroscience, vol. 21, no. 6, pp. 1819–1829, 2001.
[36]  M. E. Nelson, A. Kuryatov, C. H. Choi, Y. Zhou, and J. Lindstrom, “Alternate stoichiometries of α4β2 nicotinic acetylcholine receptors,” Molecular Pharmacology, vol. 63, no. 2, pp. 332–341, 2003.
[37]  Y. Zhou, M. E. Nelson, A. Kuryatov, C. Choi, J. Cooper, and J. Lindstrom, “Human α4/β2 acetylcholine receptors formed from linked subunits,” Journal of Neuroscience, vol. 23, no. 27, pp. 9004–9015, 2003.
[38]  Y. Ben-Ari, J. L. Gaiarsa, R. Tyzio, and R. Khazipov, “GABA: a pioneer transmitter that excites immature neurons and generates primitive oscillations,” Physiological Reviews, vol. 87, no. 4, pp. 1215–1284, 2007.
[39]  W. Sieghart and G. Sperk, “Subunit composition, distribution and function of GABA(A) receptor subtypes,” Current Topics in Medicinal Chemistry, vol. 2, no. 8, pp. 795–816, 2002.
[40]  P. Cossette, P. Lachance-Touchette, and G. A. Rouleau, “Mutated GABAA receptor subunits in idiopathic generalized epilepsy,” in Jasper’s Basic Mechanisms of the Epilepsies, J. L. Noebels, M. Avoli, M. A. Rogawski, R. W. Olsen, and A. V. Delgado-Escueta, Eds., pp. 122–131, Oxford University Press, New York, NY, USA, 4th edition, 2012.
[41]  K. Fatima-Shad and P. H. Barry, “Anion permeation in GABA- and glycine-gated channels of mammalian cultured hippocampal neurons,” Proceedings of the Royal Society B, vol. 253, no. 1336, pp. 69–75, 1993.
[42]  K. Baer, H. J. Waldvogel, R. L. Faull, and M. I. Rees, “Localization og glycine receptors in the human forebrain, brainstem, and cervical spinal cord: an immunohistochemical review,” Frontiers in Molecular Neuroscience, vol. 2, article 25, 2009.
[43]  A. Triller, F. Cluzeaud, and H. Korn, “Gamma-aminobutyric acid-containing terminals can be apposed to glycine receptors at central synapses,” Journal of Cell Biology, vol. 104, no. 4, pp. 947–956, 1987.
[44]  P. Jonas, J. Bischofberger, and J. Sandkühler, “Corelease of two fast neurotransmitters at a central synapse,” Science, vol. 281, no. 5375, pp. 419–424, 1998.
[45]  R. W. Olsen, H. J. Hanchar, P. Meera, and M. Wallner, “GABAA receptor subtypes: the “one glass of wine” receptors,” Alcohol, vol. 41, no. 3, pp. 201–209, 2007.
[46]  M. Wang, “Neurosteroids and GABA-A receptor function,” Frontiers in Endocrinology, vol. 2, article 44, 2012.
[47]  A. Marty and I. Llano, “Excitatory effects of GABA in established brain networks,” Trends in Neurosciences, vol. 28, no. 6, pp. 284–289, 2005.
[48]  R. Macdonald, J. Q. Kang, and M. J. Gallagher, “GABAA receptor mutations and genetic epilepsies,” in Jasper’s Basic Mechanisms of the Epilepsies, J. L. Noebels, M. Avoli, M. A. Rogawski, R. W. Olsen, and A. V. Delgado-Escueta, Eds., pp. 740–749, Oxford University Press, New York, NY, USA, 4th edition, 2012.
[49]  J. Siegel, The Neural Control of Sleep and Waking, Springer, New York, NY, USA, 2002.
[50]  M. Steriade, Neuronal Substrates of Sleep and Epilepsy, Cambridge University Press, Cambridge, UK, 2003.
[51]  W. Singer, “Synchronization of cortical activity and its putative role in information processing and learning,” Annual Review of Physiology, vol. 55, pp. 349–374, 1993.
[52]  M. H. J. Munk, P. R. Roelfsema, P. K?nig, A. K. Engel, and W. Singer, “Role of reticular activation in the modulation of intracortical synchronization,” Science, vol. 272, no. 5259, pp. 271–274, 1996.
[53]  M. Steriade, F. Amzica, and D. Contreras, “Synchronization of fast (30–40?Hz) spontaneous cortical rhythms during brain activation,” Journal of Neuroscience, vol. 16, no. 1, pp. 392–417, 1996.
[54]  M. Steriade, D. Contreras, F. Amzica, and I. Timofeev, “Synchronization of fast (30–40?Hz) spontaneous oscillations in intrathalamic and thalamocortical networks,” Journal of Neuroscience, vol. 16, no. 8, pp. 2788–2808, 1996.
[55]  J. J. Chrobak and G. Buzsáki, “Gamma oscillations in the entorhinal cortex of the freely behaving rat,” Journal of Neuroscience, vol. 18, no. 1, pp. 388–398, 1998.
[56]  W. H. R. Miltner, C. Braun, M. Arnold, H. Witte, and E. Taub, “Coherence of gamma-band EEG activity as a basis for associative learning,” Nature, vol. 397, no. 6718, pp. 434–436, 1999.
[57]  E. Rodriguez, N. George, J. P. Lachaux, J. Martinerie, B. Renault, and F. J. Varela, “Perception's shadow: long-distance synchronization of human brain activity,” Nature, vol. 397, no. 6718, pp. 430–433, 1999.
[58]  G. Buzsáki, Rhythms of the Brain, Oxford University Press, New York, NY, USA, 2006.
[59]  M. Steriade, “Brain electrical activity and sensory processing during waking and sleep states,” in Principles and Practice of Sleep Medicine, M. H. Kryger, T. Roth, and W. C. Dement, Eds., pp. 101–119, Elsevier Saunders, Philadelphia, Pa, USA, 4th edition, 2005.
[60]  G. Moruzzi and H. W. Magoun, “Brain stem reticular formation and activation of the EEG,” Electroencephalography and Clinical Neurophysiology, vol. 1, no. 1–4, pp. 455–473, 1949.
[61]  B. E. Jones, “Basic mechanisms of sleep-wake states,” in Principles and Practice of Sleep Medicine, M. H. Kryger, T. Roth, and W. C. Dement, Eds., pp. 136–153, Elsevier Saunders, Philadelphia, Pa, USA, 4th edition, 2005.
[62]  B. E. Jones, “From waking to sleeping: neuronal and chemical substrates,” Trends in Pharmacological Sciences, vol. 26, no. 11, pp. 578–586, 2005.
[63]  B. E. Jones, “Modulation of cortical activation and behavioral arousal by cholinergic and orexinergic systems,” Annals of the New York Academy of Sciences, vol. 1129, pp. 26–34, 2008.
[64]  T. E. Starzl, C. W. Taylor, and H. W. Magoun, “Ascending conduction in reticular activating system, with special reference to the diencephalon,” Journal of Neurophysiology, vol. 14, no. 6, pp. 461–477, 1951.
[65]  R. E. Brown, D. R. Stevens, and H. L. Haas, “The physiology of brain histamine,” Progress in Neurobiology, vol. 63, no. 6, pp. 637–672, 2001.
[66]  G. Aston-Jones and F. E. Bloom, “Activity of norepinephrine-containing locus coeruleus neurons in behaving rats anticipates fluctuations in the sleep-waking cycle,” Journal of Neuroscience, vol. 1, no. 8, pp. 876–886, 1981.
[67]  M. El Mansari, K. Sakai, and M. Jouvet, “Unitary characteristics of presumptive cholinergic tegmental neurons during the sleep-waking cycle in freely moving cats,” Experimental Brain Research, vol. 76, no. 3, pp. 519–529, 1989.
[68]  M. Steriade, S. Datta, D. Paré, G. Oakson, and R. Curró Dossi, “Neuronal activities in brain-stem cholinergic nuclei related to tonic activation processes in thalamocortical systems,” Journal of Neuroscience, vol. 10, no. 8, pp. 2541–2559, 1990.
[69]  M. G. Lee, O. K. Hassani, A. Alonso, and B. E. Jones, “Cholinergic basal forebrain neurons burst with theta during waking and paradoxical sleep,” Journal of Neuroscience, vol. 25, no. 17, pp. 4365–4369, 2005.
[70]  J. C. Gillin and N. Sitaram, “Rapid eye movement (REM) sleep: cholinergic mechanisms,” Psychological Medicine, vol. 14, no. 3, pp. 501–506, 1984.
[71]  B. L. Jacobs and C. A. Fornal, “Activity of brain serotonergic neurons in the behaving animal,” Pharmacological Reviews, vol. 43, no. 4, pp. 563–578, 1991.
[72]  J. Mirenowicz and W. Schultz, “Preferential activation of midbrain dopamine neurons by appetitive rather than aversive stimuli,” Nature, vol. 379, no. 6564, pp. 449–451, 1996.
[73]  K. J. Maloney, L. Mainville, and B. E. Jones, “c-Fos expression in dopaminergic and GABAergic neurons of the ventral mesencephalic tegmentum after paradoxical sleep deprivation and recovery,” European Journal of Neuroscience, vol. 15, no. 4, pp. 774–778, 2002.
[74]  J. J. Hagan, R. A. Leslie, S. Patel et al., “Orexin A activates locus coeruleus cell firing and increases arousal in the rat,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 19, pp. 10911–10916, 1999.
[75]  T. L. Horvath, C. Peyron, S. Diano, et al., “Hypocretin (orexin) activation and synaptic innervation of the locus coeruleus noradrenergic system,” Journal of Comparative Neurology, vol. 415, no. 2, pp. 145–159, 1999.
[76]  L. Bayer, M. Serafin, E. Eggermann et al., “Exclusive postsynaptic action of hypocretin-orexin on sublayer 6b cortical neurons,” Journal of Neuroscience, vol. 24, no. 30, pp. 6760–6764, 2004.
[77]  E. Eggermann, M. Serafin, L. Bayer et al., “Orexins/hypocretins excite basal forebrain cholinergic neurones,” Neuroscience, vol. 108, no. 2, pp. 177–181, 2001.
[78]  K. S. Eriksson, O. Sergeeva, R. E. Brown, and H. L. Haas, “Orexin/hypocretin excites the histaminergic neurons of the tuberomammillary nucleus,” Journal of Neuroscience, vol. 21, no. 23, pp. 9273–9279, 2001.
[79]  R. J. Liu, A. N. van den Pol, and G. K. Aghajanian, “Hypocretins (orexins) regulate serotonin neurons in the dorsal raphe nucleus by excitatory direct and inhibitory indirect actions,” Journal of Neuroscience, vol. 22, no. 21, pp. 9453–9464, 2002.
[80]  M. G. Lee, O. K. Hassani, and B. E. Jones, “Discharge of identified orexin/hypocretin neurons across the sleep-waking cycle,” Journal of Neuroscience, vol. 25, no. 28, pp. 6716–6720, 2005.
[81]  B. Y. Mileykovskiy, L. I. Kiyashchenko, and J. M. Siegel, “Behavioral correlates of activity in identified hypocretin/orexin neurons,” Neuron, vol. 46, no. 5, pp. 787–798, 2005.
[82]  R. M. Chemelli, J. T. Willie, C. M. Sinton et al., “Narcolepsy in orexin knockout mice: molecular genetics of sleep regulation,” Cell, vol. 98, no. 4, pp. 437–451, 1999.
[83]  L. Lin, J. Faraco, R. Li et al., “The sleep disorder canine narcolepsy is caused by a mutation in the hypocretin (orexin) receptor 2 gene,” Cell, vol. 98, no. 3, pp. 365–376, 1999.
[84]  C. Peyron, J. Faraco, W. Rogers et al., “A mutation in a case of early onset narcolepsy and a generalized absence of hypocretin peptides in human narcoleptic brains,” Nature Medicine, vol. 6, no. 9, pp. 991–997, 2000.
[85]  R. Szymusiak and D. McGinty, “Sleep-waking discharge of basal forebrain projection neurons in cats,” Brain Research Bulletin, vol. 22, no. 2, pp. 423–430, 1989.
[86]  Y. Koyama and O. Hayaishi, “Firing of neurons in the preoptic/anterior hypothalamic areas in rat: its possible involvement in slow wave sleep and paradoxical sleep,” Neuroscience Research, vol. 19, no. 1, pp. 31–38, 1994.
[87]  R. Szymusiak, N. Alam, T. L. Steininger, and D. McGinty, “Sleep-waking discharge patterns of ventrolateral preoptic/anterior hypothalamic neurons in rats,” Brain Research, vol. 803, no. 1-2, pp. 178–188, 1998.
[88]  M. Modirrousta, L. Mainville, and B. E. Jones, “Gabaergic neurons with α2-adrenergic receptors in basal forebrain and preoptic area express c-Fos during sleep,” Neuroscience, vol. 129, no. 3, pp. 803–810, 2004.
[89]  J. E. Sherin, P. J. Shiromani, R. W. McCarley, and C. B. Saper, “Activation of ventrolateral preoptic neurons during sleep,” Science, vol. 271, no. 5246, pp. 216–219, 1996.
[90]  H. Gong, D. McGinty, R. Guzman-Marin, K. T. Chew, D. Stewart, and R. Szymusiak, “Activation of c-fos in GABAergic neurones in the preoptic area during sleep and in response to sleep deprivation,” Journal of Physiology, vol. 556, no. 3, pp. 935–946, 2004.
[91]  C. B. Saper, T. C. Chou, and T. E. Scammell, “The sleep switch: hypothalamic control of sleep and wakefulness,” Trends in Neurosciences, vol. 24, no. 12, pp. 726–731, 2001.
[92]  D. McGinty and R. Szymusiak, “Sleep promoting mechanisms in mammals,” in Principles and Practice of Sleep Medicine, M. H. Kryger, T. Roth, and W. C. Dement, Eds., pp. 169–184, Elsevier Saunders, Philadelphia, Pa, USA, 4th edition, 2005.
[93]  I. Gritti, L. Mainville, M. Mancia, and B. E. Jones, “GABAergic and other noncholinergic basal forebrain neurons, together with cholinergic neurons, project to the mesocortex and isocortex in the rat,” Journal of Comparative Neurology, vol. 383, no. 2, pp. 163–177, 1997.
[94]  P. Henny and B. E. Jones, “Projections from basal forebrain to prefrontal cortex comprise cholinergic, GABAergic and glutamatergic inputs to pyramidal cells or interneurons,” European Journal of Neuroscience, vol. 27, no. 3, pp. 654–670, 2008.
[95]  I. D. Manns, A. Alonso, and B. E. Jones, “Discharge profiles of juxtacellularly labeled and immunohistochemically identified GABAergic basal forebrain neurons recorded in association with the electroencephalogram in anesthetized rats,” Journal of Neuroscience, vol. 20, no. 24, pp. 9252–9263, 2000.
[96]  O. K. Hassani, M. G. Lee, P. Henny, and B. E. Jones, “Discharge profiles of identified GABAergic in comparison to cholinergic and putative glutamatergic basal forebrain neurons across the sleep-wake cycle,” Journal of Neuroscience, vol. 29, no. 38, pp. 11828–11840, 2009.
[97]  T. Sakurai, R. Nagata, A. Yamanaka et al., “Input of orexin/hypocretin neurons revealed by a genetically encoded tracer in mice,” Neuron, vol. 46, no. 2, pp. 297–308, 2005.
[98]  P. Henny and B. E. Jones, “Innervation of orexin/hypocretin neurons by GABAergic, glutamatergic or cholinergic basal forebrain terminals evidenced by immunostaining for presynaptic vesicular transporter and postsynaptic scaffolding proteins,” Journal of Comparative Neurology, vol. 499, no. 4, pp. 645–661, 2006.
[99]  D. A. McCormick and T. Bal, “Sleep and arousal: thalamocortical mechanisms,” Annual Review of Neuroscience, vol. 20, pp. 185–215, 1997.
[100]  A. Destexhe and T. J. Sejnowski, “Interactions between membrane conductances underlying thalamocortical slow-wave oscillations,” Physiological Reviews, vol. 83, no. 4, pp. 1401–1453, 2003.
[101]  M. Steriade and R. McCarley, Brain Control of Wakefulness and Sleep, Kluwer Academic, Plenum Publishers, New York, NY, USA, 2005.
[102]  H. Jahnsen and R. Llinás, “Voltage-dependent burst-to-tonic switching of thalamic cell activity: an in vitro study,” Archives Italiennes de Biologie, vol. 122, no. 1, pp. 73–82, 1984.
[103]  E. Carbone and H. D. Lux, “A low voltage-activated, fully inactivating Ca channel in vertebrate sensory neurons,” Nature, vol. 310, no. 5977, pp. 501–502, 1984.
[104]  E. Carbone and H. D. Lux, “Kinetics and selectivity of a low-voltage-activated calcium current in chick and rat sensory neurones,” Journal of Physiology, vol. 386, pp. 547–570, 1987.
[105]  A. P. Fox, M. C. Nowycky, and R. W. Tsien, “Kinetic and pharmacological properties distinguishing three types of calcium currents in chick sensory neurones,” Journal of Physiology, vol. 394, pp. 149–172, 1987.
[106]  A. Hernandez-Cruz and H. C. Pape, “Identification of two calcium currents in acutely dissociated neurons from the rat lateral geniculate nucleus,” Journal of Neurophysiology, vol. 61, no. 6, pp. 1270–1283, 1989.
[107]  A. Becchetti, A. Arcangeli, M. R. Del Bene, M. Olivotto, and E. Wanke, “Intra and extracellular surface charges near Ca2+ channels in neurons and neuroblastoma cells,” Biophysical Journal, vol. 63, no. 4, pp. 954–965, 1992.
[108]  H. Jahnsen and R. Llinás, “Electrophysiological properties of guinea-pig thalamic neurones: an in vitro study,” Journal of Physiology, vol. 349, pp. 205–226, 1984.
[109]  M. Deschênes, M. Paradis, J. P. Roy, and M. Steriade, “Electrophysiology of neurons of lateral thalamic nuclei in cat: resting properties and burst discharges,” Journal of Neurophysiology, vol. 51, no. 6, pp. 1196–1219, 1984.
[110]  D. A. McCormick and H. C. Pape, “Properties of a hyperpolarization-activated cation current and its role in rhythmic oscillation in thalamic relay neurones,” Journal of Physiology, vol. 431, pp. 291–318, 1990.
[111]  D. A. McCormick and H. C. Pape, “Noradrenergic and serotonergic modulation of a hyperpolarization-activated cation current in thalamic relay neurones,” Journal of Physiology, vol. 431, pp. 319–342, 1990.
[112]  D. A. McCormick and J. R. Huguenard, “A model of the electrophysiological properties of thalamocortical relay neurons,” Journal of Neurophysiology, vol. 68, no. 4, pp. 1384–1400, 1992.
[113]  S. Murray Sherman and R. W. Guillery, Exploring the Thalamus and Its Role in Cortical Function, The MIT Press, Cambridge, Mass, USA, 2nd edition, 2006.
[114]  M. Steriade, M. Deschênes, L. Domich, and C. Mulle, “Abolition of spindle oscillations in thalamic neurons disconnected from nucleus reticularis thalami,” Journal of Neurophysiology, vol. 54, no. 6, pp. 1473–1497, 1985.
[115]  M. Steriade, L. Domich, G. Oakson, and M. Deschênes, “The deafferented reticular thalamic nucleas generates spindle rhythmicity,” Journal of Neurophysiology, vol. 57, no. 1, pp. 260–273, 1987.
[116]  D. Contreras, A. Destexhe, T. J. Sejnowski, and M. Steriade, “Control of spatiotemporal coherence of a thalamic oscillation by corticothalamic feedback,” Science, vol. 274, no. 5288, pp. 771–774, 1996.
[117]  I. Timofeev, D. Contreras, and M. Steriade, “Synaptic responsiveness of cortical and thalamic neurones during various phases of slow sleep oscillation in cat,” Journal of Physiology, vol. 494, no. 1, pp. 265–278, 1996.
[118]  M. Steriade, I. Timofeev, F. Grenier, and N. Dürmüller, “Role of thalamic and cortical neurons in augmenting responses and self- sustained activity: dual intracellular recordings in vivo,” Journal of Neuroscience, vol. 18, no. 16, pp. 6425–6443, 1998.
[119]  I. Timofeev, F. Grenier, M. Bazhenov, A. R. Houweling, T. J. Sejnowski, and M. Steriade, “Short-and medium-term plasticity associated with augmenting responses in cortical slabs and spindles in intact cortex of cats in vivo,” Journal of Physiology, vol. 542, no. 2, pp. 583–598, 2002.
[120]  M. Steriade, A. Nunez, and F. Amzica, “Intracellular analysis of relations between the slow (<1?Hz) neocortical oscillation and other sleep rhythms of the electroencephalogram,” Journal of Neuroscience, vol. 13, no. 8, pp. 3266–3283, 1993.
[121]  M. Steriade, R. C. Dossi, and A. Nunez, “Network modulation of a slow intrinsic oscillation of cat thalamocortical neurons implicated in sleep delta waves: cortically induced synchronization and brainstem cholinergic suppression,” Journal of Neuroscience, vol. 11, no. 10, pp. 3200–3217, 1991.
[122]  F. Amzica and M. Steriade, “Disconnection of intracortical synaptic linkages disrupts synchronization of a slow oscillation,” Journal of Neuroscience, vol. 15, no. 6, pp. 4658–4677, 1995.
[123]  I. Timofeev and M. Steriade, “Low-frequency rhythms in the thalamus of intact-cortex and decorticated cats,” Journal of Neurophysiology, vol. 76, no. 6, pp. 4152–4168, 1996.
[124]  D. Contreras and M. Steriade, “Cellular basis of EEG slow rhythms: a study of dynamic corticothalamic relationships,” Journal of Neuroscience, vol. 15, no. 1, pp. 604–622, 1995.
[125]  P. Achermann and A. A. Borbély, “Low-frequency (< 1?Hz) oscillations in the human sleep electroencephalogram,” Neuroscience, vol. 81, no. 1, pp. 213–222, 1997.
[126]  D. Pare, Y. Smith, A. Parent, and M. Steriade, “Projections of brainstem core cholinergic and non-cholinergic neurons of cat to intralaminar and reticular thalamic nuclei,” Neuroscience, vol. 25, no. 1, pp. 69–86, 1988.
[127]  Y. Smith, D. Pare, M. Deschênes, A. Parent, and M. Steriade, “Cholinergic and non-cholinergic projections from the upper brainstem core to the visual thalamus in the cat,” Experimental Brain Research, vol. 70, no. 1, pp. 166–180, 1988.
[128]  M. Steriade, D. Pare, A. Parent, and Y. Smith, “Projections of cholinergic and non-cholinergic neurons of the brainstem core to relay and associational thalamic nuclei in the cat and macaque monkey,” Neuroscience, vol. 25, no. 1, pp. 47–67, 1988.
[129]  R. C. Dossi, D. Pare, and M. Steriade, “Short-lasting nicotinic and long-lasting muscarinic depolarizing responses of thalamocortical neurons to stimulation of mesopontine cholinergic nuclei,” Journal of Neurophysiology, vol. 65, no. 3, pp. 393–406, 1991.
[130]  B. Hu, M. Steriade, and M. Deschênes, “The effects of brainstem peribrachial stimulation on perigeniculate neurons: the blockage of spindle waves,” Neuroscience, vol. 31, no. 1, pp. 1–12, 1989.
[131]  M. Steriade, K. Sakai, and M. Jouvet, “Bulbo-thalamic neurons related to thalamocortical activation processes during paradoxical sleep,” Experimental Brain Research, vol. 54, no. 3, pp. 463–475, 1984.
[132]  M. Steriade, A. Parent, D. Pare, and Y. Smith, “Cholinergic and non-cholinergic neurons of cat basal forebrain project to reticular and mediodorsal thalamic nuclei,” Brain Research, vol. 408, no. 1-2, pp. 372–376, 1987.
[133]  M. Steriade, “Synchronized activities of coupled oscillators in the cerebral cortex and thalamus at different levels of vigilance,” Cerebral Cortex, vol. 7, no. 6, pp. 583–588, 1997.
[134]  R. Llinás and U. Ribary, “Coherent 40-Hz oscillation characterizes dream state in humans,” Proceedings of the National Academy of Sciences of the United States of America, vol. 90, no. 5, pp. 2078–2081, 1993.
[135]  L. L. Iversen, S. D. Iversen, F. E. Bloom, and R. H. Roth, Introduction To Neuropsychopharmacology, Oxford University Press, New York, NY, USA, 2009.
[136]  C. R. Houser, G. D. Crawford, and R. P. Barber, “Organization and morphological characteristics of cholinergic neurons: an immunocytochemical study with a monoclonal antibody to choline acetyltransferase,” Brain Research, vol. 266, no. 1, pp. 97–119, 1983.
[137]  D. M. Armstrong, C. B. Saper, and A. I. Levey, “Distribution of cholinergic neurons in rat brain: deomonstrated by the immunocytochemical localization of choline acetyltransferase,” Journal of Comparative Neurology, vol. 216, no. 1, pp. 53–68, 1983.
[138]  U. Arvidsson, M. Riedl, R. Elde, and B. Meister, “Vesicular acetylcholine transporter (VAChT) protein: a novel and unique marker for cholinergic neurons in the central and peripheral nervous system,” Journal of Comparative Neurology, vol. 378, no. 4, pp. 454–467, 1997.
[139]  J. D. Erickson, H. Varoqui, M. K. H. Schafer et al., “Functional identification of a vesicular acetylcholine transporter and its expression from a “cholinergic” gene locus,” Journal of Biological Chemistry, vol. 269, no. 35, pp. 21929–21932, 1994.
[140]  J. D. Erickson, E. Weihe, M. K. M. Schafer et al., “The VAChT/ChAT “cholinergic gene locus”: new aspects of genetic and vesicular regulation of cholinergic function,” Progress in Brain Research, vol. 109, pp. 69–82, 1996.
[141]  T. Okuda, T. Haga, Y. Kanai, H. Endou, T. Ishihara, and I. Katsura, “Identification and characterization of the high-affinity choline transporter,” Nature Neuroscience, vol. 3, no. 2, pp. 120–125, 2000.
[142]  S. Apparsundaram, S. M. Ferguson, A. L. George, and R. D. Blakely, “Molecular cloning of a human, hemicholinium-3-sensitive choline transporter,” Biochemical and Biophysical Research Communications, vol. 276, no. 3, pp. 862–867, 2000.
[143]  D. A. McCormick, H. C. Pape, and A. Williamson, “Actions of norepinephrine in the cerebral cortex and thalamus: implications for function of the central noradrenergic system,” Progress in Brain Research, vol. 88, pp. 293–305, 1991.
[144]  D. A. McCormick, “Neurotransmitter actions in the thalamus and cerebral cortex and their role in neuromodulation of thalamocortical activity,” Progress in Neurobiology, vol. 39, no. 4, pp. 337–388, 1992.
[145]  M. Sarter, W. J. Gehring, and R. Kozak, “More attention must be paid: the neurobiology of attentional effort,” Brain Research Reviews, vol. 51, no. 2, pp. 145–160, 2006.
[146]  K. Guillem, B. Bloem, R. B. Poorthuis, et al., “Nicotinic acetylcholine receptor β2 subunits in the medial prefrontal cortex control attention,” Science, vol. 333, no. 6044, pp. 888–891, 2011.
[147]  H. H. Jasper and J. Tessier, “Acetylcholine liberation from cerebral cortex during paradoxical (REM) sleep,” Science, vol. 172, no. 3983, pp. 601–602, 1971.
[148]  K. Krnjevi?, R. Pumain, and L. Renaud, “The mechanism of excitation by acetylcholine in the cerebral cortex,” Journal of Physiology, vol. 215, no. 1, pp. 247–268, 1971.
[149]  M. R. Picciotto, M. Zoli, C. Lena et al., “Abnormal avoidance learning in mice lacking functional high-affinity nicotine receptor in the brain,” Nature, vol. 374, no. 6517, pp. 65–67, 1995.
[150]  M. R. Picciotto, M. Zoli, R. Rimondini et al., “Acetylcholine receptors containing the β2 subunit are involved in the reinforcing properties of nicotine,” Nature, vol. 391, no. 6663, pp. 173–177, 1998.
[151]  B. Hahn, C. G. V. Sharples, S. Wonnacott, M. Shoaib, and I. P. Stolerman, “Attentional effects of nicotinic agonists in rats,” Neuropharmacology, vol. 44, no. 8, pp. 1054–1067, 2003.
[152]  C. D. C. Bailey, M. De Biasi, P. J. Fletcher, and E. K. Lambe, “The nicotinic acetylcholine receptor α5 subunit plays a key role in attention circuitry and accuracy,” Journal of Neuroscience, vol. 30, no. 27, pp. 9241–9252, 2010.
[153]  W. M. Howe, J. Ji, V. Parikh et al., “Enhancement of attentional performance by selective stimulation of α4β2* nAChRs: underlying cholinergic mechanisms,” Neuropsychopharmacology, vol. 35, no. 6, pp. 1391–1401, 2010.
[154]  B. Lendvai and E. S. Vizi, “Nonsynaptic chemical transmission through nicotinic acetylcholine receptors,” Physiological Reviews, vol. 88, no. 2, pp. 333–349, 2008.
[155]  G. Pepeu and M. G. Giovannini, “Changes in acetylcholine extracellular levels during cognitive processes,” Learning and Memory, vol. 11, no. 1, pp. 21–27, 2004.
[156]  P. Turrini, M. A. Casu, T. P. Wong, Y. De Koninck, A. Ribeiro-da-Silva, and A. C. Cuello, “Cholinergic nerve terminals establish classical synapses in the rat cerebral cortex: synaptic pattern and age-related atrophy,” Neuroscience, vol. 105, no. 2, pp. 277–285, 2001.
[157]  D. Umbriaco, K. C. Watkins, L. Descarries, C. Cozzari, and B. K. Hartman, “Ultrastructural and morphometric features of the acetylcholine innervation in adult rat parietal cortex: an electron microscopic study in serial sections,” Journal of Comparative Neurology, vol. 348, no. 3, pp. 351–373, 1994.
[158]  L. Mrzljak, M. Pappy, C. Leranth, and P. S. Goldman-Rakic, “Cholinergic synaptic circuitry in the macaque prefrontal cortex,” Journal of Comparative Neurology, vol. 357, no. 4, pp. 603–617, 1995.
[159]  P. Aracri, S. Consonni, R. Morini et al., “Tonic modulation of GABA release by nicotinic acetylcholine receptors in layer v of the murine prefrontal cortex,” Cerebral Cortex, vol. 20, no. 7, pp. 1539–1555, 2010.
[160]  A. J. Graham, C. M. Martin-Ruiz, T. Teaktong, M. A. Ray, and J. A. Court, “Human brain nicotinic receptors, their distribution and participation in neuropsychiatric disorders,” Current Drug Targets, vol. 1, no. 4, pp. 387–397, 2002.
[161]  J. von Engelhardt, M. Eliava, A. H. Meyer, A. Rozov, and H. Monyer, “Functional characterization of intrinsic cholinergic interneurons in the cortex,” Journal of Neuroscience, vol. 27, no. 21, pp. 5633–5642, 2007.
[162]  N. Mechawar and L. Descarries, “The cholinergic innervation develops early and rapidly in the rat cerebral cortex: a quantitative immunocytochemical study,” Neuroscience, vol. 108, no. 4, pp. 555–567, 2001.
[163]  S. Consonni, S. Leone, A. Becchetti, and A. Amadeo, “Developmental and neurochemical features of cholinergic neurons in the murine cerebral cortex,” BMC Neuroscience, vol. 10, article 18, 2009.
[164]  M. De Fusco, A. Becchetti, A. Patrignani et al., “The nicotinic receptor β2 subunit is mutant in nocturnal frontal lobe epilepsy,” Nature Genetics, vol. 26, no. 3, pp. 275–276, 2000.
[165]  H. A. Phillips, I. Favre, M. Kirkpatrick et al., “CHRNB2 is the second acetylcholine receptor subunit associated with autosomal dominant nocturnal frontal lobe epilepsy,” American Journal of Human Genetics, vol. 68, no. 1, pp. 225–231, 2001.
[166]  C. Vidal and J. P. Changeux, “Nicotinic acid and muscarinic modulations of excitatory synaptic transmission in the rat prefrontal cortex in vitro,” Neuroscience, vol. 56, no. 1, pp. 23–32, 1993.
[167]  Z. Gil, B. W. Connors, and Y. Amitai, “Differential regulation of neocortical synapses by neuromodulators and activity,” Neuron, vol. 19, no. 3, pp. 679–686, 1997.
[168]  Y. Gioanni, “Nicotinic receptors in the rat prefrontal cortex: increase in glutamate release and facilitation of mediodorsal thalamo-cortical transmission,” European Journal of Neuroscience, vol. 11, no. 1, pp. 18–30, 1999.
[169]  E. K. Lambe, M. R. Picciotto, and G. K. Aghajanian, “Nicotine induces glutamate release from thalamocortical terminals in prefrontal cortex,” Neuropsychopharmacology, vol. 28, no. 2, pp. 216–225, 2003.
[170]  Z. G. Chu, F. M. Zhou, and J. J. Hablitz, “Nicotinic acetylcholine receptor-mediated synaptic potentials in rat neocortex,” Brain Research, vol. 887, no. 2, pp. 399–405, 2000.
[171]  G. Zolles, E. Wagner, A. Lampert, and B. Sutor, “Functional expression of nicotinic acetylcholine receptors in rat neocortical layer 5 pyramidal cells,” Cerebral Cortex, vol. 19, no. 5, pp. 1079–1091, 2009.
[172]  S. M. Kassam, P. M. Herman, N. M. Goodfellow, N. C. Alves, and E. K. Lambe, “Developmental excitation of corticothalamic neurons by nicotinic acetylcholine receptors,” Journal of Neuroscience, vol. 28, no. 35, pp. 8756–8764, 2008.
[173]  E. K. Lambe, P. Olausson, N. K. Horst, J. R. Taylor, and G. K. Aghajanian, “Hypocretin and nicotine excite the same thalamocortical synapses in prefrontal cortex: correlation with improved attention in rat,” Journal of Neuroscience, vol. 25, no. 21, pp. 5225–5229, 2005.
[174]  J. J. Couey, R. M. Meredith, S. Spijker et al., “Distributed network actions by nicotine increase the threshold for spike-timing-dependent plasticity in prefrontal cortex,” Neuron, vol. 54, no. 1, pp. 73–87, 2007.
[175]  R. B. Poorthuis, B. Bloem, B. Schak, J. Wester, C. P. de Kock, and H. D. Mansvelder, “Layer-specific modulation of the prefrontal cortex by nicotinic acetylcholine receptors,” Cerebral Cortex. In press.
[176]  H. B. M. Uylings, H. J. Groenewegen, and B. Kolb, “Do rats have a prefrontal cortex?” Behavioural Brain Research, vol. 146, no. 1-2, pp. 3–17, 2003.
[177]  P. L. A. Gabbott, T. A. Warner, P. R. L. Jays, P. Salway, and S. J. Busby, “Prefrontal cortex in the rat: projections to subcortical autonomic, motor, and limbic centers,” Journal of Comparative Neurology, vol. 492, no. 2, pp. 145–177, 2005.
[178]  K. A. Richardson, E. E. Fanselow, and B. W. Connors, “Neocortical anatomy and physiology,” in Epilepsy. A Comprehensive Textbook, J. Engel Jr. and T. A. Pedley, Eds., pp. 323–335, Lippincott Williams and Wilkins, Philadelphia, Pa, USA, 2008.
[179]  Z. Xiang, J. R. Huguenard, and D. A. Prince, “Cholinergic switching within neocortical inhibitory networks,” Science, vol. 281, no. 5379, pp. 985–988, 1998.
[180]  J. T. Porter, B. Cauli, K. Tsuzuki, B. Lambolez, J. Rossier, and E. Audinat, “Selective excitation of subtypes of neocortical interneurons by nicotinic receptors,” Journal of Neuroscience, vol. 19, no. 13, pp. 5228–5235, 1999.
[181]  E. Christophe, A. Roebuck, J. F. Staiger, D. J. Lavery, S. Charpak, and E. Audinat, “Two types of nicotinic receptors mediate an excitation of neocortical layer I interneurons,” Journal of Neurophysiology, vol. 88, no. 3, pp. 1318–1327, 2002.
[182]  M. Alkondon, E. F. R. Pereira, H. M. Eisenberg, and E. X. Albuquerque, “Nicotinic receptor activation in human cerebral cortical interneurons: a mechanism for inhibition and disinhibition of neuronal networks,” Journal of Neuroscience, vol. 20, no. 1, pp. 66–75, 2000.
[183]  A. Klaassen, J. Glykys, J. Maguire, C. Labarca, I. Mody, and J. Boulter, “Seizures and enhanced cortical GABAergic inhibition in two mouse models of human autosomal dominant nocturnal frontal lobe epilepsy,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 50, pp. 19152–19157, 2006.
[184]  L. L. McMahon, K. W. Yoon, and V. A. Chiappinelli, “Electrophysiological evidence for presynaptic nicotinic receptors in the avian ventral lateral geniculate nucleus,” Journal of Neurophysiology, vol. 71, no. 2, pp. 826–829, 1994.
[185]  J. Z. Guo, T. L. Tredway, and V. A. Chiappinelli, “Glutamate and GABA release are enhanced by different subtypes of presynaptic nicotinic receptors in the lateral geniculate nucleus,” Journal of Neuroscience, vol. 18, no. 6, pp. 1963–1969, 1998.
[186]  C. Lena and J. P. Changeux, “Role of Ca2+ ions in nicotinic facilitation of GABA release in mouse thalamus,” Journal of Neuroscience, vol. 17, no. 2, pp. 576–585, 1997.
[187]  J. Z. Guo, Y. Liu, E. M. Sorenson, and V. A. Chiappinelli, “Synaptically released and exogenous ACh activates different nicotinic receptors to enhance evoked glutamatergic transmission in the lateral geniculate nucleus,” Journal of Neurophysiology, vol. 94, no. 4, pp. 2549–2560, 2005.
[188]  J. Z. Guo, E. M. Sorenson, and V. A. Chiappinelli, “Cholinergic modulation of non-N-methyl-D-aspartic acid glutamatergic transmission in the chick ventral lateral geniculate nucleus,” Neuroscience, vol. 166, no. 2, pp. 604–614, 2010.
[189]  E. G. Jones, “GABAergic neurons and their role in cortical plasticity in primates,” Cerebral Cortex, vol. 3, no. 5, pp. 361–372, 1993.
[190]  H. Markram, M. Toledo-Rodriguez, Y. Wang, A. Gupta, G. Silberberg, and C. Wu, “Interneurons of the neocortical inhibitory system,” Nature Reviews Neuroscience, vol. 5, no. 10, pp. 793–807, 2004.
[191]  H. S. Meyer, D. Schwarz, V. C. Wimmer, et al., “Inhibitory interneurons in a cortical column form hot zones of inhibition in layers 2 and 5A,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 40, pp. 16807–16812, 2011.
[192]  A. Peters, B. R. Payne, and K. Josephson, “Transcallosal non-pyramidal cell projections from visual cortex in the cat,” Journal of Comparative Neurology, vol. 302, no. 1, pp. 124–142, 1990.
[193]  M. Fabri and T. Manzoni, “Glutamic acid decarboxylase immunoreactivity in callosal projecting neurons of cat and rat somatic sensory areas,” Neuroscience, vol. 123, no. 2, pp. 557–566, 2004.
[194]  S. Higo, N. Udaka, and N. Tamamaki, “Long-range GABAergic projection neurons in the cat neocortex,” Journal of Comparative Neurology, vol. 503, no. 3, pp. 421–431, 2007.
[195]  S. Higo, K. Akashi, K. Sakimura, and N. Tamamaki, “Subtypes of GABAergic neurons project axons in the neocortex,” Frontiers in Neuroanatomy, vol. 3, article 25, 2009.
[196]  C. T. McDonald and A. Burkhalter, “Organization of long-range inhibitory connections within rat visual cortex,” Journal of Neuroscience, vol. 13, no. 2, pp. 768–781, 1993.
[197]  Y. A. Gonchar, P. B. Johnson, and R. J. Weinberg, “GABA-immunopositive neurons in rat neocortex with contralateral projections to S-I,” Brain Research, vol. 697, no. 1-2, pp. 27–34, 1995.
[198]  V. Aroniadou-Anderjaska and A. Keller, “Intrinsic inhibitory pathways in mouse barrel cortex,” NeuroReport, vol. 7, no. 14, pp. 2363–2368, 1996.
[199]  M. Fabri and T. Manzoni, “Glutamate decarboxylase immunoreactivity in corticocortical projecting neurons of rat somatic sensory cortex,” Neuroscience, vol. 72, no. 2, pp. 435–448, 1996.
[200]  R. Tomioka, K. Okamoto, T. Furuta et al., “Demonstration of long-range GABAergic connections distributed throughout the mouse neocortex,” European Journal of Neuroscience, vol. 21, no. 6, pp. 1587–1600, 2005.
[201]  R. Tomioka and K. S. Rockland, “Long-distance corticocortical GABAergic neurons in the adult monkey white and gray matter,” Journal of Comparative Neurology, vol. 505, no. 5, pp. 526–538, 2007.
[202]  N. Tamamaki and R. Tomioka, “Long-range GABAergic connections distributed throughout the neocortex and their possible function,” Frontiers in Neuroscience, vol. 4, article 202, 2010.
[203]  J. J. Soghomonian and D. L. Martin, “Two isoforms of glutamate decarboxylase: why?” Trends in Pharmacological Sciences, vol. 19, no. 12, pp. 500–505, 1998.
[204]  L. Li, J. Jiang, W. A. Hagopian et al., “Differential detection of rat islet and brain glutamic acid decarboxylase (GAD) isoforms with sequence-specific peptide antibodies,” Journal of Histochemistry and Cytochemistry, vol. 43, no. 1, pp. 53–59, 1995.
[205]  S. L. McIntire, R. J. Reimer, K. Schuske, R. H. Edwards, and E. M. Jorgensen, “Identification and characterization of the vesicular GABA transporter,” Nature, vol. 389, no. 6653, pp. 870–876, 1997.
[206]  C. Sagné, S. El Mestikawy, M. F. Isambert et al., “Cloning of a functional vesicular GABA and glycine transporter by screening of genome databases,” FEBS Letters, vol. 417, no. 2, pp. 177–183, 1997.
[207]  F. A. Chaudhry, R. J. Reimer, E. E. Bellocchio et al., “The vesicular GABA transporter, VGAT, localizes to synaptic vesicles in sets of glycinergic as well as GABAergic neurons,” Journal of Neuroscience, vol. 18, no. 23, pp. 9733–9750, 1998.
[208]  E. A. Schwartz, “Calcium-independent release of GABA from isolated horizontal cells of the toad retina,” Journal of Physiology, vol. 323, pp. 211–227, 1982.
[209]  S. Yazulla and J. Kleinschmidt, “Carrier-mediated release of GABA from retinal horizontal cells,” Brain Research, vol. 263, no. 1, pp. 63–75, 1983.
[210]  J. P. Pin and J. Bockaert, “Two distinct mechanisms, differentially affected by excitatory amino acids, trigger GABA release from fetal mouse striatal neurons in primary culture,” Journal of Neuroscience, vol. 9, no. 2, pp. 648–656, 1989.
[211]  V. Gallo, M. Patrizio, and G. Levi, “GABA release triggered by the activation of neuron-like non-NMDA receptors in cultured type 2 astrocytes is carrier-mediated,” Glia, vol. 4, no. 3, pp. 245–255, 1991.
[212]  S. Bernath, “Calcium-independent release of amino acid neurotransmitters: fact or artifact?” Progress in Neurobiology, vol. 38, no. 1, pp. 57–91, 1992.
[213]  D. Attwell, B. Barbour, and M. Szatkowski, “Nonvesicular release of neurotransmitter,” Neuron, vol. 11, no. 3, pp. 401–407, 1993.
[214]  U. Koch and A. K. Magnusson, “Unconventional GABA release: mechanisms and function,” Current Opinion in Neurobiology, vol. 19, no. 3, pp. 305–310, 2009.
[215]  N. B. Hamilton and D. Attwell, “Do astrocytes really exocytose neurotransmitters?” Nature Reviews Neuroscience, vol. 11, no. 4, pp. 227–238, 2010.
[216]  M. C. Angulo, K. Le Meur, A. S. Kozlov, S. Charpak, and E. Audinat, “GABA, a forgotten gliotransmitter,” Progress in Neurobiology, vol. 86, no. 3, pp. 297–303, 2008.
[217]  I. E. Scheffer, K. P. Bhatia, I. Lopes-Cendes et al., “Autosomal dominant frontal epilepsy misdiagnosed as sleep disorder,” The Lancet, vol. 343, no. 8896, pp. 515–517, 1994.
[218]  I. E. Scheffer, K. P. Bhatia, I. Lopes-Cendes et al., “Autosomal dominant nocturnal frontal lobe epilepsy: a distinctive clinical disorder,” Brain, vol. 118, no. 1, pp. 61–73, 1995.
[219]  W. T. Blume, H. O. Lüders, E. Mizrahi, C. Tassinari, W. Van Emde Boas, and J. Engel, “Glossary of descriptive terminology for ictal semiology: report of the ILAE Task Force on classification and terminology,” Epilepsia, vol. 42, no. 9, pp. 1212–1218, 2001.
[220]  R. Combi, L. Dalprà, M. L. Tenchini, and L. Ferini-Strambi, “Autosomal dominant nocturnal frontal lobe epilepsy: a critical overview,” Journal of Neurology, vol. 251, no. 8, pp. 923–934, 2004.
[221]  F. Provini, G. Plazzi, P. Tinuper, S. Vandi, E. Lugaresi, and P. Montagna, “Nocturnal frontal lobe epilepsy: a clinical and polygraphic overview of 100 consecutive cases,” Brain, vol. 122, no. 6, pp. 1017–1031, 1999.
[222]  F. Picard and E. Brodtkorb, “Familial frontal lobe epilepsy,” in Epilepsy. A Comprehensive Textbook, J. Engel Jr and T. A. Pedley, Eds., pp. 2495–2502, Lippincott Williams and Wilkins, Philadelphia, Pa, USA, 2nd edition, 2008.
[223]  F. Picard, A. J. Pegna, V. Arntsberg et al., “Neuropsychological disturbances in frontal lobe epilepsy due to mutated nicotinic receptors,” Epilepsy and Behavior, vol. 14, no. 2, pp. 354–359, 2009.
[224]  M. L. Tenchini, S. Duga, M. T. Bonati et al., “Ser252Phe and 776ins3 mutations in the CHRNA4 gene are rare in the Italian ADNFLE population,” Sleep, vol. 22, no. 5, pp. 637–639, 1999.
[225]  O. K. Steinlein, A. Magnusson, J. Stoodt et al., “An insertion mutation of the CHRNA4 gene in a family with autosomal dominant nocturnal frontal lobe epilepsy,” Human Molecular Genetics, vol. 6, no. 6, pp. 943–947, 1997.
[226]  O. K. Steinlein, J. Stoodt, J. Mulley, S. Berkovic, I. E. Scheffer, and E. Brodtkorb, “Independent occurrence of the CHRNA4 Ser248Phe mutation in a Norwegian family with nocturnal frontal lobe epilepsy,” Epilepsia, vol. 41, no. 5, pp. 529–535, 2000.
[227]  S. Hirose, H. Iwata, H. Akiyoshi et al., “A novel mutation of CHRNA4 responsible for autosomal dominant nocturnal frontal lobe epilepsy,” Neurology, vol. 53, no. 8, pp. 1749–1753, 1999.
[228]  T. Leniger, C. Kananura, A. Hufnagel, S. Bertrand, D. Bertrand, and O. K. Steinlein, “A new Chrna4 mutation with low penetrance in nocturnal frontal lobe epilepsy,” Epilepsia, vol. 44, no. 7, pp. 981–985, 2003.
[229]  F. Díaz-Otero, M. Quesada, J. Morales-Corraliza, C. Martínez-Parra, P. Gómez-Garre, and J. M. Serratosa, “Autosomal dominant nocturnal frontal lobe epilepsy with a mutation in the CHRNB2 gene,” Epilepsia, vol. 49, no. 3, pp. 516–520, 2008.
[230]  D. Bertrand, F. Elmslie, E. Hughes et al., “The CHRNB2 mutation I312M is associated with epilepsy and distinct memory deficits,” Neurobiology of Disease, vol. 20, no. 3, pp. 799–804, 2005.
[231]  J. C. Hoda, W. Gu, M. Friedli et al., “Human nocturnal frontal lobe epilepsy: pharmocogenomic profiles of pathogenic nicotinic acetylcholine receptor β-subunit mutations outside the ion channel pore,” Molecular Pharmacology, vol. 74, no. 2, pp. 379–391, 2008.
[232]  W. Gu, D. Bertrand, and O. K. Steinlein, “A major role of the nicotinic acetylcholine receptor gene CHRNA2 in autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE) is unlikely,” Neuroscience Letters, vol. 422, no. 1, pp. 74–76, 2007.
[233]  R. Combi, L. Ferini-Strambi, and M. Luisa Tenchini, “CHRNA2 mutations are rare in the NFLE population: evaluation of a large cohort of Italian patients,” Sleep Medicine, vol. 10, no. 1, pp. 139–142, 2009.
[234]  S. Hirose and H. Kurahashi H, “Autosomal dominant nocturnal frontal lobe epilepsy,” R. A. Pagon, T. C. Bird, C. R. Dolan, and K. Stephens, Eds., University of Washington, Seattle, Wash, USA, 2010.
[235]  Y. Chen, L. Wu, Y. Fang et al., “A novel mutation of the nicotinic acetylcholine receptor gene CHRNA4 in sporadic nocturnal frontal lobe epilepsy,” Epilepsy Research, vol. 83, no. 2-3, pp. 152–156, 2009.
[236]  H. Liu, C. Lu, Z. Li et al., “The identification of a novel mutation of nicotinic acetylcholine receptor gene CHRNB2 in a Chinese patient: its possible implication in non-familial nocturnal frontal lobe epilepsy,” Epilepsy Research, vol. 95, no. 1-2, pp. 94–99, 2011.
[237]  H. A. Phillips, I. E. Scheffer, K. M. Crossland et al., “Autosomal dominant nocturnal frontal-lobe epilepsy: genetic heterogeneity and evidence for a second locus at 15q24,” American Journal of Human Genetics, vol. 63, no. 4, pp. 1108–1116, 1998.
[238]  R. Combi, L. Dalprà, L. Ferini-Strambi, and M. L. Tenchini, “Frontal lobe epilepsy and mutations of the corticotropin-releasing hormone gene,” Annals of Neurology, vol. 58, no. 6, pp. 899–904, 2005.
[239]  S. R. Vincent, K. Satoh, and D. M. Armstrong, “Neuropeptides and NADPH-diaphorase activity in the ascending cholinergic reticular system of the rat,” Neuroscience, vol. 17, no. 1, pp. 167–182, 1986.
[240]  H. Okuda, S. Shioda, Y. Nakai, H. Nakayama, M. Okamoto, and T. Nakashima, “The presence of corticotropin-releasing factor-like immunoreactive synaptic vesicles in axon terminals with nicotinic acetylcholine receptor-like immunoreactivity in the median eminence of the rat,” Neuroscience Letters, vol. 161, no. 2, pp. 183–186, 1993.
[241]  H. P. Jedema and A. A. Grace, “Corticotropin-releasing hormone directly activates noradrenergic neurons of the locus ceruleus recorded in vitro,” Journal of Neuroscience, vol. 24, no. 43, pp. 9703–9713, 2004.
[242]  C. Cirelli and G. Tononi, “Gene expression in the brain across the sleep-waking cycle,” Brain Research, vol. 885, no. 2, pp. 303–321, 2000.
[243]  C. Léna, D. Popa, R. Grailhe, P. Escourrou, J. P. Changeux, and J. Adrien, “β2-Containing nicotinic receptors contribute to the organization of sleep and regulate putative micro-arousals in mice,” Journal of Neuroscience, vol. 24, no. 25, pp. 5711–5718, 2004.
[244]  F. Picard, D. Bruel, D. Servent et al., “Alteration of the in vivo nicotinic receptor density in ADNFLE patients: a PET study,” Brain, vol. 129, no. 8, pp. 2047–2060, 2006.
[245]  C. Di Resta, P. Ambrosi, G. Curia, and A. Becchetti, “Effect of carbamazepine and oxcarbazepine on wild-type and mutant neuronal nicotinic acetylcholine receptors linked to nocturnal frontal lobe epilepsy,” European Journal of Pharmacology, vol. 643, no. 1, pp. 13–20, 2010.
[246]  J. C. Hoda, M. Wanischeck, D. Bertrand, and O. K. Steinlein, “Pleiotropic functional effects of the first epilepsy-associated mutation in the human CHRNA2 gene,” FEBS Letters, vol. 583, no. 10, pp. 1599–1604, 2009.
[247]  M. Kishi and J. H. Steinbach, “Role of the agonist binding site in up-regulation of neuronal nicotinic α4β2 receptors,” Molecular Pharmacology, vol. 70, no. 6, pp. 2037–2044, 2006.
[248]  S. Weiland, V. Witzemann, A. Villarroel, P. Propping, and O. Steinlein, “An amino acid exchange in the second transmembrane segment of a neuronal nicotinic receptor causes partial epilepsy by altering its desensitization kinetics,” FEBS Letters, vol. 398, no. 1, pp. 91–96, 1996.
[249]  A. Kuryatov, V. Gerzanich, M. Nelson, F. Olale, and J. Lindstrom, “Mutation causing autosomal dominant nocturnal frontal lobe epilepsy alters Ca2+ permeability, conductance, and gating of human α4β2 nicotinic acetylcholine receptors,” Journal of Neuroscience, vol. 17, no. 23, pp. 9035–9047, 1997.
[250]  S. Bertrand, S. Weiland, S. F. Berkovic, O. K. Steinlein, and D. Bertrand, “Properties of neuronal nicotinic acetylcholine receptor mutants from humans suffering from autosomal dominant nocturnal frontal lobe epilepsy,” British Journal of Pharmacology, vol. 125, no. 4, pp. 751–760, 1998.
[251]  B. Moulard, F. Picard, S. Le Hellard et al., “Ion channel variation causes epilepsies,” Brain Research Reviews, vol. 36, no. 2-3, pp. 275–284, 2001.
[252]  D. Bertrand, F. Picard, S. Le Hellard et al., “How mutations in the nAChRs can cause ADNFLE epilepsy,” Epilepsia, vol. 43, supplement s5, pp. 112–122, 2002.
[253]  V. Itier and D. Bertrand, “Mutations of the neuronal nicotinic acetylcholine receptors and their association with ADNFLE,” Neurophysiologie Clinique, vol. 32, no. 2, pp. 99–107, 2002.
[254]  A. Figl, N. Viseshakul, N. Shafaee, J. Forsayeth, and B. N. Cohen, “Two mutations linked to nocturnal frontal lobe epilepsy cause use-dependent potentiation of the nicotinic ACh response,” Journal of Physiology, vol. 513, no. 3, pp. 655–670, 1998.
[255]  N. Matsushima, S. Hirose, H. Iwata et al., “Mutation (Ser284Leu) of neuronal nicotinic acetylcholine receptor α4 subunit associated with frontal lobe epilepsy causes faster desensitization of the rat receptor expressed in oocytes,” Epilepsy Research, vol. 48, no. 3, pp. 181–186, 2002.
[256]  N. Rodrigues-Pinguet, L. Jia, M. Li et al., “Five ADNFLE mutations reduce the Ca2+ dependence of the mammalian α4β2 acetylcholine response,” Journal of Physiology, vol. 550, no. 1, pp. 11–26, 2003.
[257]  N. O. Rodrigues-Pinguet, T. J. Pinguet, A. Figl, H. A. Lester, and B. N. Cohen, “Mutations linked to autosomal dominant nocturnal frontal lobe epilepsy affect allosteric Ca2+ activation of the 42 nicotinic acetylcholine receptor,” Molecular Pharmacology, vol. 68, no. 2, pp. 487–501, 2005.
[258]  W. Feller, An Introduction To Probability Theory and Its Applications, Wiley and Sons, New York, NY, USA, 3rd edition, 1968.
[259]  C. Mulle, D. Choquet, H. Korn, and J. P. Changeux, “Calcium influx through nicotinic receptor in rat central neurons: its relevance to cellular regulation,” Neuron, vol. 8, no. 1, pp. 135–143, 1992.
[260]  S. Vernino, M. Amador, C. W. Luetje, J. Patrick, and J. A. Dani, “Calcium modulation and high calcium permeability of neuronal nicotinic acetylcholine receptors,” Neuron, vol. 8, no. 1, pp. 127–134, 1992.
[261]  B. Buisson, M. Gopalakrishnan, S. P. Arneric, J. P. Sullivan, and D. Bertrand, “Human α4β2 neuronal nicotinic acetylcholine receptor in HEK 293 cells: a patch-clamp study,” Journal of Neuroscience, vol. 16, no. 24, pp. 7880–7891, 1996.
[262]  J. L. Galzi, S. Bertrand, P. J. Corringer, J. P. Changeux, and D. Bertrand, “Identification of calcium binding sites that regulate potentiation of a neuronal nicotinic acetylcholine receptor,” EMBO Journal, vol. 15, no. 21, pp. 5824–5832, 1996.
[263]  J. Y. F. Wong, S. A. Ross, C. McColl et al., “Proconvulsant-induced seizures in α4 nicotinic acetylcholine receptor subunit knockout mice,” Neuropharmacology, vol. 43, no. 1, pp. 55–64, 2002.
[264]  Y. Teper, D. Whyte, E. Cahir et al., “Nicotine-induced dystonic arousal complex in a mouse line harboring a human autosomal-dominant nocturnal frontal lobe epilepsy mutation,” Journal of Neuroscience, vol. 27, no. 38, pp. 10128–10142, 2007.
[265]  X. Peng, V. Gerzanich, R. Anand, P. J. Whiting, and J. Lindstrom, “Nicotine-induced increase in neuronal nicotinic receptors results from a decrease in the rate of receptor turnover,” Molecular Pharmacology, vol. 46, no. 3, pp. 523–530, 1994.
[266]  M. Gopalakrishnan, E. J. Molinari, and J. P. Sullivan, “Regulation of human α4/β2 neuronal nicotinic acetylcholine receptors by cholinergic channel ligands and second messenger pathways,” Molecular Pharmacology, vol. 52, no. 3, pp. 524–534, 1997.
[267]  P. Whiteaker, C. G. V. Sharples, and S. Wonnacott, “Agonist-induced up-regulation of α4β2 nicotinic acetylcholine receptors in M10 cells: pharmacological and spatial definition,” Molecular Pharmacology, vol. 53, no. 5, pp. 950–962, 1998.
[268]  C. Labarca, J. Schwarz, P. Deshpande et al., “Point mutant mice with hypersensitive α4 nicotinic receptors show dopaminergic deficits and increased anxiety,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 5, pp. 2786–2791, 2001.
[269]  C. Fonck, R. Nashmi, P. Deshpande et al., “Increased sensitivity to agonist-induced seizures, straub tail, and hippocampal theta rhythm in knock-in mice carrying hypersensitive α4 nicotinic receptors,” Journal of Neuroscience, vol. 23, no. 7, pp. 2582–2590, 2003.
[270]  A. R. Tapper, S. L. McKinney, R. Nashmi et al., “Nicotine activation of α4* receptors: sufficient for reward, tolerance, and sensitization,” Science, vol. 306, no. 5698, pp. 1029–1032, 2004.
[271]  C. Fonck, B. N. Cohen, R. Nashmi et al., “Novel seizure phenotype and sleep disruptions in knock-in mice with hypersensitive α4* nicotinic receptors,” Journal of Neuroscience, vol. 25, no. 49, pp. 11396–11411, 2005.
[272]  G. Zhu, M. Okada, S. Yoshida et al., “Rats harboring S284L Chrna4 mutation show attenuation of synaptic and extrasynaptic GABAergic transmission and exhibit the nocturnal frontal lobe epilepsy phenotype,” Journal of Neuroscience, vol. 28, no. 47, pp. 12465–12476, 2008.
[273]  M. Avoli, J. Louvel, R. Pumain, and R. K?hling, “Cellular and molecular mechanisms of epilepsy in the human brain,” Progress in Neurobiology, vol. 77, no. 3, pp. 166–200, 2005.
[274]  J. L. Noebels, “Genetic models of epilepsy,” in Epilepsy. A Comprehensive Textbook, J. Engel Jr. and T. A. Pedley, Eds., pp. 445–455, Lippincott Williams and Wilkins, Philadelphia, Pa, USA, 2nd edition, 2008.
[275]  J. Xu, B. N. Cohen, Y. Zhu et al., “Altered activity-rest patterns in mice with a human autosomal-dominant nocturnal frontal lobe epilepsy mutation in the β2 nicotinic receptor,” Molecular Psychiatry, vol. s16, pp. 1048–1061, 2011.
[276]  I. Manfredi, A. D. Zani, L. Rampoldi et al., “Expression of mutant β2 nicotinic receptors during development is crucial for epileptogenesis,” Human Molecular Genetics, vol. 18, no. 6, pp. 1075–1088, 2009.
[277]  M. Gossen and H. Bujard, “Tight control of gene expression in mammalian cells by tetracycline- responsive promoters,” Proceedings of the National Academy of Sciences of the United States of America, vol. 89, no. 12, pp. 5547–5551, 1992.
[278]  P. Tinuper, F. Bisulli, F. Provini, P. Montagna, and E. Lugaresi, “Nocturnal frontal lobe epilepsy: new pathophysiological interpretations,” Sleep Medicine, vol. 12, supplement 2, pp. S39–S42, 2011.
[279]  R. J. Douglas and K. A. C. Martin, “Neuronal circuits of the neocortex,” Annual Review of Neuroscience, vol. 27, pp. 419–451, 2004.
[280]  R. Ferrari, N. Le Novère, M. R. Picciotto, J. P. Changeux, and M. Zoli, “Acute and long-term changes in the mesolimbic dopamine pathway after systemic or local single nicotine injections,” European Journal of Neuroscience, vol. 15, no. 11, pp. 1810–1818, 2002.
[281]  M. Fedi, S. F. Berkovic, I. E. Scheffer et al., “Reduced striatal D1 receptor binding in autosomal dominant nocturnal frontal lobe epilepsy,” Neurology, vol. 71, no. 11, pp. 795–798, 2008.
[282]  M. Galarreta and S. Hestrin, “A network of fast-spiking cells in the neocortex connected by electrical synapses,” Nature, vol. 402, no. 6757, pp. 72–75, 1999.
[283]  J. R. Gibson, M. Belerlein, and B. W. Connors, “Two networks of electrically coupled inhibitory neurons in neocortex,” Nature, vol. 402, no. 6757, pp. 75–79, 1999.
[284]  M. Galarreta and S. Hestrin, “Electrical and chemical synapses among parvalbumin fast-spiking GABAergic interneurons in adult mouse neocortex,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 19, pp. 12438–12443, 2002.
[285]  B. Sutor and G. Zolles, “Neuronal nicotinic acetylcholine receptors and autosomal dominant nocturnal frontal lobe epilepsy: a critical review,” Pflugers Archiv European Journal of Physiology, vol. 442, no. 5, pp. 642–651, 2001.
[286]  P. B. Crino, “Development of cortical excitability,” in Epilepsy. A Comprehensive Textbook, J. Engel Jr and T. A. Pedley, Eds., pp. 385–391, Lippincott Williams and Wilkins, Philadelphia, Pa, USA, 2008.
[287]  P. Eriksson, E. Ankarberg, and A. Fredriksson, “Exposure to nicotine during a defined period in neonatal life induces permanent changes in brain nicotinic receptors and in behaviour of adult mice,” Brain Research, vol. 853, no. 1, pp. 41–48, 2000.
[288]  P. Rakic, “The radial edifice of cortical architecture: from neuronal silhouettes to genetic engineering,” Brain Research Reviews, vol. 55, no. 2, pp. 204–219, 2007.
[289]  E. Bruel-Jungerman, P. J. Lucassen, and F. Francis, “Cholinergic influences on cortical development and adult neurogenesis,” Behavioural Brain Research, vol. 221, no. 2, pp. 379–388, 2011.
[290]  H. D. Mansvelder and L. W. Role, “Neuronal receptors for nicotine: functional diversity and developmental changes,” in Brain Development. Normal Processes and the Effects of Alcohol and Nicotine, M. W. Miller, Ed., pp. 341–362, Oxford University Press, Oxford, UK, 2006.
[291]  N. Mechawar, K. C. Watkins, and L. Descarries, “Ultrastructural features of the acetylcholine innervation in the developing parietal cortex of rat,” Journal of Comparative Neurology, vol. 443, no. 3, pp. 250–258, 2002.
[292]  M. Cordero-Erausquin, L. M. Marubio, R. Klink, and J. P. Changeux, “Nicotinic receptor function: new perspectives from knockout mice,” Trends in Pharmacological Sciences, vol. 21, no. 6, pp. 211–217, 2000.
[293]  Z. Liu, R. A. Neff, and D. K. Berg, “Sequential interplay of nicotinic and GABAergic siqnaling guides neuronal development,” Science, vol. 314, no. 5805, pp. 1610–1613, 2006.
[294]  C. Rivera, J. Voipio, J. A. Payne et al., “The K+/Cl- co-transporter KCC2 renders GABA hyperpolarizing during neuronal maturation,” Nature, vol. 397, no. 6716, pp. 251–255, 1999.
[295]  C. Rivera, J. Voipio, J. Thomas-Crusells et al., “Mechanism of activity-dependent downregulation of the neuron-specific K-Cl cotransporter KCC2,” Journal of Neuroscience, vol. 24, no. 19, pp. 4683–4691, 2004.
[296]  C. Takayama and Y. Inoue, “Developmental localization of potassium chloride co-transporter 2 (KCC2), GABA and vesicular GABA transporter (VGAT) in the postnatal mouse somatosensory cortex,” Neuroscience Research, vol. 67, no. 2, pp. 137–148, 2010.
[297]  S. Ge, E. L. K. Goh, K. A. Sailor, Y. Kitabatake, G. L. Ming, and H. Song, “GABA regulates synaptic integration of newly generated neurons in the adult brain,” Nature, vol. 439, no. 7076, pp. 589–593, 2006.
[298]  F. Picard, S. Baulac, P. Kahane et al., “Dominant partial epilepsies. A clinical, electrophysiological and genetic study of 19 European families,” Brain, vol. 123, no. 6, pp. 1247–1262, 2000.
[299]  A. Oldani, M. Manconi, M. Zucconi, C. Martinelli, and L. Ferini-Strambi, “Topiramate treatment for nocturnal frontal lobe epilepsy,” Seizure, vol. 15, no. 8, pp. 649–652, 2006.
[300]  G. P. Raju, D. P. Sarco, A. Poduri, J. J. Riviello, A. M. R. Bergin, and M. Takeoka, “Oxcarbazepine in children with nocturnal frontal-lobe epilepsy,” Pediatric Neurology, vol. 37, no. 5, pp. 345–349, 2007.
[301]  A. Romigi, M. G. Marciani, F. Placidi et al., “Oxcarbazepine in nocturnal frontal-lobe epilepsy: a further interesting report,” Pediatric Neurology, vol. 39, no. 4, p. 298, 2008.
[302]  P. Lloyd, G. Flesch, and W. Dieterle, “Clinical pharmacology and pharmacokinetics of oxcarbazepine,” Epilepsia, vol. 35, no. 3, pp. S10–S13, 1994.
[303]  E. S. Tecoma, “Oxcarbazepine,” Epilepsia, vol. 40, no. 5, pp. S37–S46, 1999.
[304]  S. I. Johannessen, D. Battino, D. J. Berry et al., “Therapeutic drug monitoring of the newer antiepileptic drugs,” Therapeutic Drug Monitoring, vol. 25, no. 3, pp. 347–363, 2003.
[305]  R. L. Macdonald and M. A. Rogawski, “Cellular effects of antiepileptic drugs,” in Epilepsy. A Comprehensive Textbook, J. Engel Jr. and T. A. Pedley, Eds., pp. 1433–1445, Lippincott Williams and Wilkins, Philadelphia, Pa, USA, 2nd edition, 2008.
[306]  M. J. McLean and R. L. Macdonald, “Carbamazepine and 10,11-epoxycarbamazepine produce use- and voltage-dependent limitation of rapidly firing action potentials of mouse central neurons in cell culture,” Journal of Pharmacology and Experimental Therapeutics, vol. 238, no. 2, pp. 727–738, 1986.
[307]  J. R. Schwarz and G. Grigat, “Phenytoin and carbamazepine: potential- and frequency-dependent block of Na currents in mammalian myelinated nerve fibers,” Epilepsia, vol. 30, no. 3, pp. 286–294, 1989.
[308]  J. Benes, A. Parada, A. A. Figueiredo et al., “Anticonvulsant and sodium channel-blocking properties of novel 10,11- dihydro-5H-dibenz[b,f]azepine-5-carboxamide derivatives,” Journal of Medicinal Chemistry, vol. 42, no. 14, pp. 2582–2587, 1999.
[309]  C. Zona, M. T. Ciotti, and M. Avoli, “Topiramate attenuates voltage-gated sodium currents in rat cerebellar granule cells,” Neuroscience Letters, vol. 231, no. 3, pp. 123–126, 1997.
[310]  G. Curia, P. Aracri, E. Colombo et al., “Phosphorylation of sodium channels mediated by protein kinase-C modulates inhibition by topiramate of tetrodotoxin-sensitive transient sodium current,” British Journal of Pharmacology, vol. 150, no. 6, pp. 792–797, 2007.
[311]  F. Picard, S. Bertrand, O. K. Steinlein, and D. Bertrand, “Mutated nicotinic receptors responsible for autosomal dominant nocturnal frontal lobe epilepsy are more sensitive to carbamazepine,” Epilepsia, vol. 40, no. 9, pp. 1198–1209, 1999.
[312]  C. Zheng, K. Yang, Q. Liu et al., “The anticonvulsive drug lamotrigine blocks neuronal α4β2 nicotinic acetylcholine receptors,” Journal of Pharmacology and Experimental Therapeutics, vol. 335, no. 2, pp. 401–408, 2010.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133