全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

New Lipase for Biodiesel Production: Partial Purification and Characterization of LipSB 25-4

DOI: 10.1155/2014/289749

Full-Text   Cite this paper   Add to My Lib

Abstract:

The lipolytic activities of 300 Streptomyces isolates were determined in Tributyrin and Rhodamine-B Agar. Lipase activities were also measured with p-nitrophenyl palmitate (p-NPP) as a substrate. The strain of Streptomyces bambergiensis OC 25-4 used in this study was selected among 300 strains of Streptomyces from MUCC as the best lipase producer. The incubation conditions were optimized and the inoculum amount, incubation period, effect of carbon and nitrogen sources, and rates of MgSO4 and CaCO3 were investigated. LipSB 25-4 (the lipase produced by S. bambergiensis OC 25-4 strain) was partially purified with ammonium sulphate precipitation, dialysis, and gel filtration chromatography 2.73-fold and with 92.12?U/mg specific activity. The optimal pH and temperature for LipSB 25-4 were determined as 8.0 and 50°C, respectively. The lipase has high stability in all pH and temperature values used in this study. While LipSB 25-4 was slightly activated in the presence of β-mercaptoethanol, it was slightly reduced by PMSF. The enzyme conserved approximately 75% of its activity at the end of 60?h, in the presence of methanol and ethanol. Since LipSB 25-4 displays high activity in the thermophilic conditions and stability in the presence of organic solvents, this lipase can catalyse the biodiesel production from olive oil by the transesterification reactions. 1. Introduction The increasing severity of the global energy crisis, shortage of fossil fuels, increase in the crude oil prices, and an increasing number of environmental problems and environmental concerns to reduce pollution have resulted in the rapid growth of research into alternative energy sources, as well as the use of such sources [1, 2]. Biodiesel which is derived from triglycerides by transesterification with methanol is receiving increasing attention as an alternative, nontoxic, biodegradable, and renewable source of fuel and energy with significantly lower exhaust emissions of particulate matter and green-house gases [3–5] and for its ability to replace fossil fuels. Chemically, biodiesel is produced by transforming triglycerides into fatty acid alkyl esters in the presence of alcohol, such as methanol or ethanol, and an acid or alkali catalyst, generating glycerol as a by-product [6]. Enzymes represent an environmentally friendly alternative to chemical catalysts [7]. Utilization of lipase as a catalyst for biodiesel fuel production has great potential compared with chemical methods [7, 8]. Recently, lipase-catalyzed methanolysis method has become more attractive than the traditional chemical

References

[1]  A. Bajaj, P. Lohan, P. N. Jha, and R. Mehrotra, “Biodiesel production through lipase catalyzed transesterification: an overview,” Journal of Molecular Catalysis B, vol. 62, no. 1, pp. 9–14, 2010.
[2]  J. Zheng, L. Xu, Y. Liu, X. Zhang, and Y. Yan, “Lipase-coated K2SO4 micro-crystals: preparation, characterization, and application in biodiesel production using various oil feedstocks,” Bioresource Technology, vol. 110, pp. 224–231, 2012.
[3]  J. Lu, K. Nie, F. Xie, F. Wang, and T. Tan, “Enzymatic synthesis of fatty acid methyl esters from lard with immobilized Candida sp. 99–125,” Process Biochemistry, vol. 42, no. 9, pp. 1367–1370, 2007.
[4]  T. Tan, J. Lu, K. Nie, L. Deng, and F. Wang, “Biodiesel production with immobilized lipase: a review,” Biotechnology Advances, vol. 28, no. 5, pp. 628–634, 2010.
[5]  A. Karmakar, S. Karmakar, and S. Mukherjee, “Properties of various plants and animals feedstocks for biodiesel production,” Bioresource Technology, vol. 101, no. 19, pp. 7201–7210, 2010.
[6]  P. T. Vasudevan and M. Briggs, “Biodiesel production—current state of the art and challenges,” Journal of Industrial Microbiology and Biotechnology, vol. 35, no. 5, pp. 421–430, 2008.
[7]  R. C. Rodrigues, B. C. C. Pessela, G. Volpato, R. Fernandez-Lafuente, J. M. Guisan, and M. A. Z. Ayub, “Two step ethanolysis: a simple and efficient way to improve the enzymatic biodiesel synthesis catalyzed by an immobilized-stabilized lipase from Thermomyces lanuginosus,” Process Biochemistry, vol. 45, no. 8, pp. 1268–1273, 2010.
[8]  S. V. Ranganathan, S. L. Narasimhan, and K. Muthukumar, “An overview of enzymatic production of biodiesel,” Bioresource Technology, vol. 99, no. 10, pp. 3975–3981, 2008.
[9]  K. Ban, M. Kaieda, T. Matsumoto, A. Kondo, and H. Fukuda, “Whole cell biocatalyst for biodiesel fuel production utilizing Rhizopus oryzae cells immobilized within biomass support particles,” Biochemical Engineering Journal, vol. 8, no. 1, pp. 39–43, 2001.
[10]  S. Al-Zuhair, A. Hussein, A. H. Al-Marzouqi, and I. Hashim, “Continuous production of biodiesel from fat extracted from lamb meat in supercritical CO2 media,” Biochemical Engineering Journal, vol. 60, pp. 106–110, 2012.
[11]  K. S. Yang, J. Sohn, and H. K. Kim, “Catalytic properties of a lipase from Photobacterium lipolyticum for biodiesel production containing a high methanol concentration,” Journal of Bioscience and Bioengineering, vol. 107, no. 6, pp. 599–604, 2009.
[12]  J. L. Arpigny and K. Jaeger, “Bacterial lipolytic enzymes: classification and properties,” Biochemical Journal, vol. 343, no. 1, pp. 177–183, 1999.
[13]  V. R. Murty, J. Bhat, and P. K. A. Muniswaran, “Hydrolysis of oils by using immobilized lipase enzyme: a review,” Biotechnology and Bioprocess Engineering, vol. 7, no. 2, pp. 57–66, 2002.
[14]  L. Fjerbaek, K. V. Christensen, and B. Norddahl, “A review of the current state of biodiesel production using enzymatic transesterification,” Biotechnology and Bioengineering, vol. 102, no. 5, pp. 1298–1315, 2009.
[15]  W. Parawira, “Biotechnological production of biodiesel fuel using biocatalysed transesterification: a review,” Critical Reviews in Biotechnology, vol. 29, no. 2, pp. 82–93, 2009.
[16]  R. Sharma, Y. Chisti, and U. C. Banerjee, “Production, purification, characterization, and applications of lipases,” Biotechnology Advances, vol. 19, no. 8, pp. 627–662, 2001.
[17]  K. F. Chater, “Genetics of differentiation in Streptomyces,” Annual Review of Microbiology, vol. 47, pp. 685–713, 1993.
[18]  S. D. Bentley, K. F. Chater, A.-M. Cerde?o-Tárraga et al., “Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2),” Nature, vol. 417, no. 6885, pp. 141–147, 2002.
[19]  K. Jaeger, S. Ransac, B. W. Dijkstra, C. Colson, M. van Heuvel, and O. Misset, “Bacterial lipases,” FEMS Microbiology Reviews, vol. 15, no. 1, pp. 29–63, 1994.
[20]  D. Litthauer, A. Ginster, and E. van Eeden Skein, “Pseudomonas luteola lipase: a new member of the 320-residue Pseudomonas lipase family,” Enzyme and Microbial Technology, vol. 30, no. 2, pp. 209–215, 2002.
[21]  B. Hernández-Rodríguez, J. Córdova, E. Bárzana, and E. Favela-Torres, “Effects of organic solvents on activity and stability of lipases produced by thermotolerant fungi in solid-state fermentation,” Journal of Molecular Catalysis B, vol. 61, no. 3-4, pp. 136–142, 2009.
[22]  U. K. Winkler and M. Stuckmann, “Glycogen, hyaluronate, and some other polysaccharides greatly enhance the formation of exolipase by Serratia marcescens,” Journal of Bacteriology, vol. 138, no. 3, pp. 663–670, 1979.
[23]  R. Boran and A. Ugur, “Partial purification and characterization of the organic solvent-tolerant lipase produced by pseudomonas fluorescens RB02-3 isolated from milk,” Preparative Biochemistry and Biotechnology, vol. 40, no. 4, pp. 229–241, 2010.
[24]  H. Yoo, J. R. Simkhada, S. S. Cho et al., “A novel alkaline lipase from Ralstonia with potential application in biodiesel production,” Bioresource Technology, vol. 102, no. 10, pp. 6104–6111, 2011.
[25]  I. B. Bankovi?-Ili?, O. S. Stamenkovi?, and V. B. Veljkovi?, “Biodiesel production from non-edible plant oils,” Renewable and Sustainable Energy Reviews, vol. 16, pp. 3621–3647, 2012.
[26]  P. Rapp and S. Backhaus, “Formation of extracellular lipases by filamentous fungi, yeasts, and bacteria,” Enzyme and Microbial Technology, vol. 14, no. 11, pp. 938–943, 1992.
[27]  M. Abrami?, I. Le??i?, T. Korica, L. Vitale, W. Saenger, and J. Pigac, “Purification and properties of extracellular lipase from Streptomyces rimosus,” Enzyme and Microbial Technology, vol. 25, no. 6, pp. 522–529, 1999.
[28]  A. C?té and F. Shareck, “Cloning, purification and characterization of two lipases from Streptomyces coelicolor A3(2),” Enzyme and Microbial Technology, vol. 42, no. 5, pp. 381–388, 2008.
[29]  A. Bielen, H. ?etkovi?, P. F. Long, H. Schwab, M. Abrami?, and D. Vujaklija, “The SGNH-hydrolase of Streptomyces coelicolor has (aryl)esterase and a true lipase activity,” Biochimie, vol. 91, no. 3, pp. 390–400, 2009.
[30]  V. Dandavate, J. Jinjala, H. Keharia, and D. Madamwar, “Production, partial purification and characterization of organic solvent tolerant lipase from Burkholderia multivorans V2 and its application for ester synthesis,” Bioresource Technology, vol. 100, no. 13, pp. 3374–3381, 2009.
[31]  Y. Zhang, K. Meng, Y. Wang et al., “A novel proteolysis-resistant lipase from keratinolytic Streptomyces fradiae var. k11,” Enzyme and Microbial Technology, vol. 42, no. 4, pp. 346–352, 2008.
[32]  P. Mander, S. S. Cho, J. R. Simkhada, Y. H. Choi, D. J. Park, and J. C. Yoo, “An organic solvent-tolerant lipase from Streptomyces sp. CS133 for enzymatic transesterification of vegetable oils in organic media,” Process Biochemistry, vol. 47, no. 4, pp. 635–642, 2012.
[33]  R. N. Z. R. A. Rahman, S. N. Baharum, A. B. Salleh, and M. Basri, “S5 lipase: an organic solvent tolerant enzyme,” Journal of Microbiology, vol. 44, no. 6, pp. 583–590, 2006.
[34]  V. George and A. M. Diwan, “Simultaneous staining of proteins during polyacrylamide gel electrophoresis in acidic gels by countermigration of Coomassie brilliant blue R-250,” Analytical Biochemistry, vol. 132, no. 2, pp. 481–483, 1983.
[35]  Z. Liu, Z. Chi, L. Wang, and J. Li, “Production, purification and characterization of an extracellular lipase from Aureobasidium pullulans HN2.3 with potential application for the hydrolysis of edible oils,” Biochemical Engineering Journal, vol. 40, no. 3, pp. 445–451, 2008.
[36]  A. M. Klibanov, “Enzymes that work in organic solvents,” ChemTech, vol. 16, no. 6, pp. 354–359, 1986.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133