Helicobacter pylori (H. pylori) infection is associated with increased oxidative stress and serum prolidase activity (SPA) in many diseases. We aimed to observe SPA and oxidative stress in nonulcer dyspepsia (NUD) infected with and without H. pylori among eastern Indians. 106 patients with H. pylori positive NUD, 82 patients with H. pylori negative NUD, and 50 healthy individuals were selected. SPA, total antioxidant capacity (TAOC), and total oxidant status (TOS) were measured with the use of spectrophotometer and an automated measurement method. SPA, TOS, and oxidative stress index (OSI) were significantly higher in patients with H. pylori positive than H. pylori negative NUD and healthy individuals (all ), whereas TAOC was significantly lower ( ). Nonsignificant, increased SPA ( value = 0.6083) and decreased TAOC ( value = 0.1186) were observed in patients with H. pylori negative NUD than healthy individuals, while increased TOS and OSI were significant ( ). Weak, nonsignificant correlations were observed between serum prolidase activity and TAOC, TOS, and OSI in H. pylori positive cases. Thus, increased SPA along with increased oxidative stress was observed, which seem to be closely associated with H. pylori infection. SPA and oxidative stress seem to be used as biomarkers for H. pylori infection in NUD. 1. Introduction In 1984, it was first reported that H. pylori, a gram negative, spiral shaped, microaerophilic bacterium that colonizes the stomach and is involved in the pathogenesis of duodenal ulceration, gastric cancer, gastric ulceration, and active chronic gastritis [1, 2]. Dyspepsia is a common term used for abdomen pain and complimented with other gastrointestinal symptoms. Nonulcer dyspepsia is characterized with as upper gastrointestinal symptoms of the patients. Nonulcer dyspepsia is also known as functional dyspepsia which found to be associated with H. pylori infection [3, 4]. H. pylori infection was found to be associated with gastric cancer, peptic ulcer, duodenal ulcer, gastric carcinoma [5–8], and so forth. Prolidase (EC 3.4.13.9), proline dipeptidase, degraded dipeptides with hydroxyproline or proline as c-terminal amino acid [9, 10]. It participates in collagen metabolism, cell growth, and matrix remodeling [11]. Its activity has been reported in leukocytes, erythrocytes, plasma, and the various organs such as brain, heart, kidney, uterus, thymus, and dermal fibroblasts. Prolidase activity has been reported in various disorders, like osteoarthritis, chronic liver disease, and osteoporosis [12–15]. H. pylori infection leads to
References
[1]
B. J. Marshall and J. R. Warren, “Unidentified curved bacilli in the stomach of patients with gastritis and peptic ulceration,” The Lancet, vol. 1, no. 8390, pp. 1311–1314, 1984.
[2]
M. J. Blaser, “Hypothesis: the changing relationships of Helicobacter pylori and humans: implications for health and disease,” Journal of Infectious Diseases, vol. 179, no. 6, pp. 1523–1530, 1999.
[3]
P. Ranjan, “Non-ulcer dyspepsia,” Journal of the Association of Physicians of India, vol. 60, pp. 13–15, 2012.
[4]
D. K. Mukhopadhyay, R. K. Tandon, S. Dasarathy, M. Mathur, and J. P. Wali, “A study of Helicobacter pylori in north Indian subjects with non-ulcer dyspepsia,” Indian Journal of Gastroenterology, vol. 11, no. 2, pp. 76–79, 1992.
[5]
S. Tripathi, U. Ghoshal, B. Mittal, D. Chourasia, S. Kumar, and U. C. Ghoshal, “Association between gastric mucosal glutathione-S-transferase activity, glutathione-S-transferase gene polymorphisms and Helicobacter pylori infection in gastric cancer,” Indian Journal of Gastroenterology, vol. 30, no. 6, pp. 257–263, 2011.
[6]
R. Sotoudehmanesh, A. A. Asgari, H. T. Fakheri, M. Nouraie, M. Khatibian, and N. Shirazian, “Peptic ulcer bleeding: is Helicobacter pylori a risk factor in an endemic area?” Indian Journal of Gastroenterology, vol. 24, no. 2, pp. 59–61, 2005.
[7]
Y. Bafandeh, H. Esmaeeli, and S. Aharizad, “Helicobacter pylori infection rates in duodenal ulcer patients in a population with high prevalence of infection,” Indian Journal of Gastroenterology, vol. 24, no. 3, p. 130, 2005.
[8]
S. Tiwari, U. Ghoshal, U. C. Ghoshal et al., “Helicobacter pylori-induced apoptosis in pathogenesis of gastric carcinoma,” Indian Journal of Gastroenterology, vol. 24, no. 5, pp. 193–196, 2005.
[9]
M. Bergmann and J. S. Fruton, “On proteolytic enzymes, XII, regarding the specificity of aminopeptidase and carboxypeptidase, a new type of enzyme in the intestinal tract,” Journal of Biological Chemistry, vol. 117, no. 1, pp. 189–202, 1937.
[10]
A. Surazynski, W. Miltyk, J. Palka, and J. M. Phang, “Prolidase-dependent regulation of collagen biosynthesis,” Amino Acids, vol. 35, no. 4, pp. 731–738, 2008.
[11]
J. A. Palka and J. M. Phang, “Prolidase activity in fibroblasts is regulated by interaction of extracellular matrix with cell surface integrin receptors,” Journal of Cellular Biochemistry, vol. 67, no. 2, pp. 166–175, 1997.
[12]
G. Zanaboni, K. M. Dyne, A. Rossi, V. Monafo, and G. Cetta, “Prolidase deficiency: biochemical study of erythrocyte and skin fibroblast prolidase activity in Italian patients,” Haematologica, vol. 79, no. 1, pp. 13–18, 1994.
[13]
I. Myara, A. Myara, and M. Mangeot, “Plasma prolidase activity: a possible index of collagen catabolism in chronic liver disease,” Clinical Chemistry, vol. 30, no. 2, pp. 211–215, 1984.
[14]
A. B. Erba?ci, M. Araz, A. Erba?ci, M. Tarakcioglu, and E. S. Namiduru, “Serum prolidase activity as a marker of osteoporosis in type 2 diabetes mellitus,” Clinical Biochemistry, vol. 35, pp. 263–268, 2002.
[15]
O. Altindag, O. Erel, N. Aksoy, S. Selek, H. Celik, and M. Karaoglanoglu, “Increased oxidative stress and its relation with collagen metabolism in knee osteoarthritis,” Rheumatology International, vol. 27, no. 4, pp. 339–344, 2007.
[16]
A. Santra, A. Chowdhury, S. Chaudhuri, J. Das Gupta, P. K. Banerjee, and D. N. Mazumder, “Oxidative stress in gastric mucosa in Helicobacter pylori infection,” Indian Journal of Gastroenterology, vol. 19, no. 1, pp. 21–23, 2000.
[17]
Y. Naito and T. Yoshikawa, “Molecular and cellular mechanisms involved in Helicobacter pylori-induced inflammation and oxidative stress,” Free Radical Biology and Medicine, vol. 33, no. 3, pp. 323–336, 2002.
[18]
S. Kato, S. Nakajima, Y. Nishino et al., “Association between gastric atrophy and Helicobacter pylori infection in Japanese children: a retrospective multicenter study,” Digestive Diseases and Sciences, vol. 51, no. 1, pp. 99–104, 2006.
[19]
R. Srivastava, A. Kashyap, M. Kumar, G. Nath, and A. K. Jain, “Mucosal IgA & IL-1b in Helicobacter pylori Infection,” Indian Journal of Clinical Biochemistry, vol. 28, no. 1, pp. 19–23, 2013.
[20]
M. Aslan, Y. Nazligul, M. Horoz et al., “Serum prolidase activity and oxidative status in Helicobacter pylori infection,” Clinical Biochemistry, vol. 40, no. 1-2, pp. 37–40, 2007.
[21]
R. E. Pounder and D. Ng, “The prevalence of Helicobacter pylori infection in different countries,” Alimentary Pharmacology and Therapeutics, Supplement, vol. 9, supplement 2, pp. 33–39, 1995.
[22]
B. S. Ramakrishna, “Helicobacter pylori infection in India: the case against eradication,” Indian Journal of Gastroenterology, vol. 25, no. 1, pp. 25–28, 2006.
[23]
L. M. Brown, “Helicobacter pylori: epidemiology and routes of transmission,” Epidemiologic Reviews, vol. 22, no. 2, pp. 283–297, 2000.
[24]
J.-F. Tomb, O. White, A. R. Kerlavage et al., “The complete genome sequence of the gastric pathogen Helicobacter pylori,” Nature, vol. 388, no. 6642, pp. 539–547, 1997.
[25]
“Helicobacter pylori 26695, complete genome,” National Center for Biotechnology Information, 2008, http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=genome&cmd=Retrieve&dopt=Overview&list_uids=128.
[26]
“Helicobacter pylori J99, complete genome,” National Center for Biotechnology Information, 2008, http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=genome&cmd=Retrieve&dopt=Overview&list_uids=139.
[27]
J. D. Oh, H. Kling-B?ckhed, M. Giannakis et al., “The complete genome sequence of a chronic atrophic gastritis Helicobacter pylori strain: evolution during disease progression,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 26, pp. 9999–10004, 2006.
[28]
M. F. Dixon, R. M. Genta, J. H. Yardley et al., “Classification and grading of Gastritis: the updated Sydney system,” American Journal of Surgical Pathology, vol. 20, no. 10, pp. 1161–1181, 1996.
[29]
O. Erel, “A novel automated method to measure total antioxidant response against potent free radical reactions,” Clinical Biochemistry, vol. 37, no. 2, pp. 112–119, 2004.
[30]
O. Erel, “A new automated colorimetric method for measuring total oxidant status,” Clinical Biochemistry, vol. 38, no. 12, pp. 1103–11111, 2005.
[31]
M. Stolte and B. Bethke, “Elimination of Helicobacter pylori under treatment with omeprazole,” Zeitschrift fur Gastroenterologie, vol. 28, no. 6, pp. 271–274, 1990.
[32]
D. D. Wayner, G. W. Burton, K. U. Ingold, L. R. C. Barclay, and S. J. Locke, “The relative contributions of vitamin E, urate, ascorbate and proteins to the total peroxyl radical-trapping antioxidant activity of human blood plasma,” Biochimica et Biophysica Acta, vol. 924, no. 3, pp. 408–419, 1987.
[33]
T. Miyazawa, “Determination of phospholipid hydroperoxides in human blood plasma by a chemiluminescence-HPLC assay,” Free Radical Biology and Medicine, vol. 7, no. 2, pp. 209–217, 1989.
[34]
S. B. Sharma, S. Dwivedi, K. M. Prabhu, N. Kumar, and M. C. Baruah, “Preliminary studies on serum lipids, apolipoprotein-b and oxidative stress in xanthelasma,” Indian Journal of Clinical Biochemistry, vol. 14, no. 2, pp. 245–248, 1999.
[35]
S. B. Sharma, S. Dwivedi, N. Kumar, K. M. Prabhu, and N. Madan, “Studies on oxidative stress, serum iron and iron binding capacity in subjects prone to the risk of coronary artery disease,” Indian Heart Journal, vol. 52, no. 5, pp. 583–586, 2000.
[36]
I. Myara, A. Myara, and M. Mangeot, “Plasma prolidase activity: a possible index of collagen catabolism in chronic liver disease,” Clinical Chemistry, vol. 30, no. 2, pp. 211–215, 1984.
[37]
M. Horoz, M. Aslan, F. F. Bolukbas et al., “Serum prolidase enzyme activity and its relation to histopathological findings in patients with non-alcoholic steatohepatitis,” Journal of Clinical Laboratory Analysis, vol. 24, no. 3, pp. 207–211, 2010.
[38]
J. Palka, A. Surazynski, E. Karna et al., “Prolidase activity disregulation in chronic pancreatitis and pancreatic cancer,” Hepato-Gastroenterology, vol. 49, no. 48, pp. 1699–1703, 2002.
[39]
M. Cechowska-Pasko, J. Pa?ka, and M. Z. Wojtukiewicz, “Enhanced prolidase activity and decreased collagen content in breast cancer tissue,” International Journal of Experimental Pathology, vol. 87, no. 4, pp. 289–296, 2006.
[40]
D. T. Arioz, H. Camuzcuoglu, H. Toy, S. Kurt, H. Celik, and N. Aksoy, “Serum prolidase activity and oxidative status in patients with stage I endometrial cancer,” International Journal of Gynecological Cancer, vol. 19, no. 7, pp. 1244–1247, 2009.