The current drugs against sleeping sickness are derived from cancer chemotherapeutic approaches. Herein, we aimed at evaluating the in vitro effect of alcoholic extracts of Artemisia annua (AMR), Rumex abyssinicus (RMA), and Catha edulis Forsk (CEF) on proliferation/viability of 1321N1 astrocytoma, MCF-7 breast cancer, THP-1 leukemia, and LNCaP, Du-145, and PC-3 prostate cancer cells and on Trypanosoma brucei cells. Proliferation of tumor cells was evaluated by WST-1 assay and viability/behaviour of T. brucei by cell counting and light microscopy. CEF was the most efficient growth inhibitor in comparison to AMR and RMA. Nevertheless, in LNCaP and THP-1 cells, all extracts significantly inhibited tumor growth at 3?μg/mL. All extracts inhibited proliferation of T. brucei cells in a concentration-dependent manner. Microscopic analysis revealed that 95% of the T. brucei cells died when exposed to 33?μg/mL CEF for 3 hrs. Similar results were obtained using 33?μg/mL AMR for 6?hrs. In case of RMA, however, higher concentrations were necessary to obtain similar effects on T. brucei. This demonstrates the antitumor efficacy of these extracts as well as their ability to dampen viability and proliferation of T. brucei, suggesting a common mechanism of action on highly proliferative cells, most probably by targeting cell metabolism. 1. Introduction Many anticancer reagents, including nucleotide analogues and other DNA synthesis inhibitors (e.g., methotrexate), aim at exerting a specific activity against rapidly proliferating cell types. Because of the capacity of trypanosomes for rapid growth within mammals, they have been linked to some types of cancer cells. D,L-α-Difluoromethylornithine (DFMO), a polyamine synthesis inhibitor, was originally developed as a potential anticancer reagent before it has been proved useful in trypanosomiasis therapy. Furthermore, suramin, melarsoprol, and pentamidine which are drugs licensed for the treatment of human African trypanosomiasis (HAT) are known to arise from cancer research studies [1–3]. If left untreated, sleeping sickness patients die within months when infected with T. brucei rhodesiense (acute form of the disease in East and Southern Africa) or within years when infected with T. brucei gambiense (chronic form of the disease in West and Central Africa) [4]. It is estimated that at least people are presently infected [5]. Above this burden of the disease, all the available drugs have a number of shortcomings during treatment because of resistance development against them, allergic reactions, undesirable effects in the
References
[1]
S. V. Barrett and M. P. Barrett, “Anti-sleeping sickness drugs and cancer chemotherapy,” Parasitology Today, vol. 16, no. 1, pp. 7–9, 2000.
[2]
M. Kaur, E. Reed, O. Sartor, W. Dahut, and W. D. Figg, “Suramin's development: what did we learn?” Investigational New Drugs, vol. 20, no. 2, pp. 209–219, 2002.
[3]
M. P. Barrett, D. W. Boykin, R. Brun, and R. R. Tidwell, “Human African trypanosomiasis: pharmacological re-engagement with a neglected disease,” British Journal of Pharmacology, vol. 152, no. 8, pp. 1155–1171, 2007.
[4]
World Health Organization, “African trypanosomiasis (sleeping sickness),” World Health Organization Fact Sheet, 2006, http://www.who.int/mediacentre/factsheets/fs259/en/.
[5]
P. Cattand, J. Jannin, and P. Lucas, “Sleeping sickness surveillance: an essential step towards elimination,” Tropical Medicine and International Health, vol. 6, no. 5, pp. 348–361, 2001.
[6]
F. A. S. Kuzoe and C. J. Schofield, “Strategic review of traps and targets for tsetse and African trypanosomiasis control,” Special Programme for Research and Training in Tropical Diseases (TDR), UNICEF-UNDP-World Bank-WHO, 2004.
[7]
WHO/TDR/SWG/01, “Drug development, preclinical and clinical studies and drug resistance,” Report of the Scientific Working Group Meeting on African Trypanosomiasis, 2001.
[8]
N. N. Al-Hebshi and N. Skaug, “Khat (Catha edulis)—an updated review,” Addiction Biology, vol. 10, no. 4, pp. 299–307, 2005.
[9]
A. R. Bilia, P. M. de Malgalhaes, M. C. Bergonzi, and F. F. Vincieri, “Simultaneous analysis of artemisinin and flavonoids of several extracts of Artemisia annua L. obtained from a commercial sample and a selected cultivar,” Phytomedicine, vol. 13, no. 7, pp. 487–493, 2006.
[10]
L. N. Misra, A. Ahmad, R. S. Thakur, and J. Jakupovic, “Bisnor-cadinanes from Artemisia annua and definitive 13C NMR assignments of β-arteether,” Phytochemistry, vol. 33, no. 6, pp. 1461–1464, 1993.
[11]
I. Nakase, H. Lai, N. P. Singh, and T. Sasaki, “Anticancer properties of artemisinin derivatives and their targeted delivery by transferrin conjugation,” International Journal of Pharmaceutics, vol. 354, no. 1-2, pp. 28–33, 2008.
[12]
G.-Q. Zheng, “Cytotoxic terpenoids and flavonoids from Artemisia annua,” Planta Medica, vol. 60, no. 1, pp. 54–57, 1994.
[13]
N. P. Singh and H. C. Lai, “Artemisinin induces apoptosis in human cancer cells,” Anticancer Research, vol. 24, no. 4, pp. 2277–2280, 2004.
[14]
B. Mark and G. Lori, American Botanical Council, Herbclip, 2007.
[15]
R. Sen, S. Bandyopadhyay, A. Dutta et al., “Artemisinin triggers induction of cell-cycle arrest and apoptosis in Leishmania donovani promastigotes,” Journal of Medical Microbiology, vol. 56, no. 9, pp. 1213–1218, 2007.
[16]
S. R. Meshnick, T. W. Tsang, F. B. Lin et al., “Activated oxygen mediates the antimalarial activity of qinghaosu,” Progress in Clinical and Biological Research, vol. 313, pp. 95–104, 1989.
[17]
V. Dhingra, K. Vishweshwar Rao, and M. Lakshmi Narasu, “Current status of artemisinin and its derivatives as antimalarial drugs,” Life Sciences, vol. 66, no. 4, pp. 279–300, 1999.
[18]
D. Abebe and A. Ayehu, Medicinal Plants and Enigmatic Health Practices of Northern Ethiopia, Birhanena Selam Priniting Enterprise, Addis Ababa, Ethiopia, 1993.
[19]
T. Mekonnen, K. Urga, and E. Engidawork, “Evaluation of the diuretic and analgesic activities of the rhizomes of Rumex abyssinicus Jacq in mice,” Journal of Ethnopharmacology, vol. 127, no. 2, pp. 433–439, 2010.
[20]
M. Wegiera, H. D. Smolarz, and A. Bogucka-Kocka, “Rumex L. species induce apoptosis in 1301, EOL-1 and H-9 cell lines,” Acta Poloniae Pharmaceutica, vol. 69, no. 3, pp. 487–499, 2012.
[21]
A. Ouaissi and M. Ouaissi, “Molecular basis of Trypanosoma cruzi and Leishmania interaction with their host(s): exploitation of immune and defense mechanisms by the parasite leading to persistence and chronicity, features reminiscent of immune system evasion strategies in cancer diseases,” Archivum Immunologiae et Therapiae Experimentalis, vol. 53, no. 2, pp. 102–114, 2005.
[22]
J. W. Chambers, M. L. Fowler, M. T. Morris, and J. C. Morris, “The anti-trypanosomal agent lonidamine inhibits Trypanosoma brucei hexokinase 1,” Molecular and Biochemical Parasitology, vol. 158, no. 2, pp. 202–207, 2008.
[23]
D. Steverding and K. M. Tyler, “Novel antitrypansomal agents,” Expert Opinion on Investigational Drugs, vol. 14, no. 8, pp. 939–955, 2005.
[24]
A. H. Fairlamb, “Chemotherapy of human African trypanosomiasis: current and future prospects,” Trends in Parasitology, vol. 19, no. 11, pp. 488–494, 2003.
[25]
A. Deterding, F. A. Dungey, K.-A. Thompson, and D. Steverding, “Anti-trypanosomal activities of DNA topoisomerase inhibitors,” Acta Tropica, vol. 93, no. 3, pp. 311–316, 2005.
[26]
D. Steverding and X. Wang, “Evaluation of anti-sleeping-sickness drugs and topoisomerase inhibitors in combination on Trypanosoma brucei,” Journal of Antimicrobial Chemotherapy, vol. 63, no. 6, pp. 1293–1295, 2009.
[27]
D. Steverding and X. Wang, “Trypanocidal activity of the proteasome inhibitor and anti-cancer drug bortezomib,” Parasites and Vectors, vol. 2, no. 1, article 29, 2009.
[28]
M. Aboulaila, N. Yokoyama, and I. Igarashi, “Inhibitory effects of (-)-epigallocatechin-3-gallate from green tea on the growth of Babesia parasites,” Parasitology, vol. 137, no. 5, pp. 785–791, 2010.
[29]
E. E. Balint, G. Falkay, and G. A. Balint, “Khat—a controversial plant,” Wiener Klinische Wochenschrift, vol. 121, no. 19-20, pp. 604–614, 2009.
[30]
T. Bredholt, E. A. Dimba, H. R. Hagland et al., “Camptothecin and khat (Catha edulis Forsk.) induced distinct cell death phenotypes involving modulation of c-FLIPL, Mcl-1, procaspase-8 and mitochondrial function in acute myeloid leukemia cell lines,” Molecular Cancer, vol. 8, article 101, 2009.
[31]
P. Kalix, “Recent advances in khat research,” Alcohol and Alcoholism, vol. 19, no. 4, pp. 319–323, 1984.
[32]
E. Dimba, B. T. Gjertsen, G. W. Francis, A. C. Johannessen, and O. K. Vintermyr, “Catha edulis (Khat) induces cell death by apoptosis in leukemia cell lines,” Annals of the New York Academy of Sciences, vol. 1010, pp. 384–388, 2003.
[33]
V. Rosenkranz and M. Wink, “Alkaloids induce programmed cell death in bloodstream forms of Trypanosomes (Trypanosoma b. brucei),” Molecules, vol. 13, no. 10, pp. 2462–2473, 2008.
[34]
N. N. Al-Hebshi, A. K. Al-Sharabi, H. M. Shuga-Aldin, M. Al-Haroni, and I. Ghandour, “Effect of khat chewing on periodontal pathogens in subgingival biofilm from chronic periodontitis patients,” Journal of Ethnopharmacology, vol. 132, no. 3, pp. 564–569, 2010.
[35]
D. Sinclair, B. Zani, S. Donegan, P. Olliaro, and P. Garner, “Artemisinin-based combination therapy for treating uncomplicated malaria,” Cochrane Database of Systematic Reviews, no. 3, Article ID CD007483, 2009.
[36]
J. Wiesner, R. Ortmann, H. Jomaa, and M. Schlitzer, “New antimalarial drugs,” Angewandte Chemie—International Edition, vol. 42, no. 43, pp. 5274–5293, 2003.
[37]
D. Steverding, “The transferrin receptor of Trypanosoma brucei,” Parasitology International, vol. 48, no. 3, pp. 191–198, 2000.
[38]
Y. V. Mishina, S. Krishna, R. K. Haynes, and J. C. Meade, “Artemisinins inhibit Trypanosoma cruzi and Trypanosoma brucei rhodesiense in vitro growth,” Antimicrobial Agents and Chemotherapy, vol. 51, no. 5, pp. 1852–1854, 2007.
[39]
Z. Maksimovi?, N. Kovacevi?, B. Lakusi?, and T. Cebovi?, “Antioxidant activity of yellow dock (Rumex crispus L., Polygonaceae) fruit extract,” Phytotherapy Research, vol. 25, no. 1, pp. 101–105, 2011.
[40]
H. Zhang, Z. Guo, N. Wu et al., “Two novel naphthalene glucosides and an anthraquinone isolated from Rumex dentatus and their antiproliferation activities in four cell lines,” Molecules, vol. 17, no. 1, pp. 843–850, 2012.