全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

1.2, Cell Proliferation, and New Target in Atherosclerosis

DOI: 10.1155/2013/463527

Full-Text   Cite this paper   Add to My Lib

Abstract:

1.2 calcium channels are the principal proteins involved in electrical, mechanical, and/or signaling functions of the cell. 1.2 couples membrane depolarization to the transient increase in intracellular Ca2+ concentration that is a trigger for muscle contraction and CREB-dependent transcriptional activation. The CACNA1C gene coding for the 1.2 pore-forming subunit is subject to extensive alternative splicing. This review is the first attempt to follow the association between cell proliferation, 1.2 expression and splice variation, and atherosclerosis. Based on insights into the association between the atherosclerosis-induced molecular remodeling of 1.2, proliferation of vascular smooth muscle cells, and CREB-dependent transcriptional signaling, this review will give a perspective outlook for the use of the CACNA1C exon skipping as a new potential gene therapy approach to atherosclerosis. 1. Introduction It has been long known that Cav1.2 calcium channel blockers inhibit human brain tumor [1], pancreatic cancer [2, 3], breast cancers [4] and small cell lung cancer [5] because they inhibit cell proliferation and DNA synthesis. Correlation between the oncogenic transformation and expression of both Cav1.2 and Cav3 channels was demonstrated in spontaneously immortalized 3T3 fibroblasts [6, 7] suggesting that both types of calcium channels may play a role in cell proliferation. Indeed, studies showed that Cav3 (T-type) calcium channels regulate proliferation, for example, of BC3H1 cells [8], vascular smooth muscle (VSM) cells [9], and glioma, neuroblastoma, and neuroblastoma × glioma hybrid cells [10]. Unlike the majority of cells, including the listed ones, normal human fibroblasts express only Cav1.2 [11]. The pore-forming subunit of this channel was cloned from human fibroblasts and identified as a “short” (exon 1) isoform of the -coding gene CACNA1C [12]. A variety of Cav1.2 calcium channel blockers, including dihydropyridines (DHPs) nifedipine and nicardipine, as well as diltiazem and verapamil inhibit cell proliferation and DNA synthesis in fibroblasts [13]. Thus, human fibroblast is an excellent cell type to study the roles of Cav1.2 in proliferation not complicated by expression of other Cav genetic variants, cell transformation, and/or differentiation. 2. Ca 1.2 and Proliferation of Normal Human Fibroblasts Our earlier studies performed on normal human diploid fibroblasts have revealed a number of important features that point to the plasticity of the Cav1.2 expression in response to cell culture conditions, including cell-cell contact inhibition,

References

[1]  Y. S. Lee, M. M. Sayeed, and R. D. Wurster, “Inhibition of cell growth and intracellular Ca2+ mobilization in human brain tumor cells by Ca2+ channel antagonists,” Molecular and Chemical Neuropathology, vol. 22, no. 2, pp. 81–95, 1994.
[2]  K. Sato, J. Ishizuka, C. W. Cooper et al., “Inhibitory effect of calcium channel blockers on growth of pancreatic cancer cells,” Pancreas, vol. 9, no. 2, pp. 193–202, 1994.
[3]  V. Bertrand, M. J. Bastie, N. Vaysse, and L. Pradayrol, “Inhibition of gastrin-induced proliferation of AR4-2J cells by calcium channel antagonists,” International Journal of Cancer, vol. 56, no. 3, pp. 427–432, 1994.
[4]  J. M. Taylor and R. U. Simpson, “Inhibition of cancer cell growth by calcium channel antagonists in the athymic mouse,” Cancer Research, vol. 52, no. 9, pp. 2413–2418, 1992.
[5]  M. G. Cattaneo, M. Gullo, and L. M. Vicentini, “C2+ and Ca2+ channel antagonists in the control of human small cell lung carcinoma cell proliferation,” European Journal of Pharmacology, vol. 247, no. 3, pp. 325–331, 1993.
[6]  C. Chen, M. J. Corbley, T. M. Roberts, and P. Hess, “Voltage-sensitive calcium channels in normal and transformed 3T3 fibroblasts,” Science, vol. 239, no. 4843, pp. 1024–1026, 1988.
[7]  P. C. Dartsch, M. Ritter, M. Gschwentner, H. J. Lang, and F. Lang, “Effects of calcium channel blockers on NIH 3T3 fibroblasts expressing the Ha-ras oncogene,” European Journal of Cell Biology, vol. 67, no. 4, pp. 372–378, 1995.
[8]  M. Biel, R. Hullin, S. Freundner et al., “Tissue-specific expression of high-voltage-activated dihydropyridine-sensitive L-type calcium channels,” European Journal of Biochemistry, vol. 200, no. 1, pp. 81–88, 1991.
[9]  D. M. Rodman, K. Reese, J. Harral et al., “Low-voltage-activated (T-type) calcium channels control proliferation of human pulmonary artery myocytes,” Circulation Research, vol. 96, no. 8, pp. 864–872, 2005.
[10]  A. Panner, L. L. Cribbs, G. M. Zainelli, T. C. Origitano, S. Singh, and R. D. Wurster, “Variation of T-type calcium channel protein expression affects cell division of cultured tumor cells,” Cell Calcium, vol. 37, no. 2, pp. 105–119, 2005.
[11]  C. Chen and P. Hess, “Calcium channels in mouse 3T3 and human fibroblasts,” Biophysical Journal, vol. 51, p. 226a, 1987.
[12]  N. M. Soldatov, “Molecular diversity of L-type Ca2+ channel transcripts in human fibroblasts,” Proceedings of the National Academy of Sciences of the United States of America, vol. 89, no. 10, pp. 4628–4632, 1992.
[13]  A. Fujii, H. Matsumoto, S. Nakao, H. Teshigawara, and Y. Akimoto, “Effect of calcium-channel blockers on cell proliferation, DNA synthesis and collagen synthesis of cultured gingival fibroblasts derived from human nifedipine responders and non-responders,” Archives of Oral Biology, vol. 39, no. 2, pp. 99–104, 1994.
[14]  N. M. Soldatov, “Genomic structure of human L-type Ca2+ channel,” Genomics, vol. 22, no. 1, pp. 77–87, 1994.
[15]  V. P. Shevchenko, N. F. Myasoedov, N. M. Soldatov, G. J. Duburs, V. V. Kastron, and I. P. Skrastins, “Synthesis and evaluation of biological activity of two novel tritium-labeled derivatives of riodipine,” Journal of Labelled Compounds and Radiopharmaceuticals, vol. 27, no. 6, pp. 721–730, 1989.
[16]  S. M. Dudkin, S. N. Gnedoj, N. N. Chernyuk, and N. M. Soldatov, “1,4-dihydropyridine receptor associated with Ca2+ channels in human embryonic fibroblasts,” FEBS Letters, vol. 233, no. 2, pp. 352–354, 1988.
[17]  A. DePover, M. A. Matlib, S. W. Lee, et al., “Specific binding of [3H]nitrendipine to membranes from coronary arteries and heart in relation to pharmacological effects. Paradoxical stimulation by diltiazem,” Biochemical and Biophysical Research Communications, vol. 108, no. 1, pp. 110–117, 1982.
[18]  N. M. Soldatov, S. N. Gnedoj, N. N. Chernyuk, I. A. Britanova, and S. M. Dudkin, “Mitogenesis and 1,4-dihydropyridine receptor associated with Ca2+-channels in human embryonic fibroblasts,” Journal of Membrane Biology, vol. 5, pp. 1161–1167, 1988 (Russian).
[19]  D. Lipscombe, D. V. Madison, M. Poenie, H. Reuter, R. Y. Tsien, and R. W. Tsien, “Spatial distribution of calcium channels and cytosolic calcium transients in growth cones and cell bodies of sympathetic neurons,” Proceedings of the National Academy of Sciences of the United States of America, vol. 85, no. 7, pp. 2398–2402, 1988.
[20]  G. S. Harms, L. Cognet, P. H. M. Lommerse et al., “Single-molecule imaging of L-type CA2+ channels in live cells,” Biophysical Journal, vol. 81, no. 5, pp. 2639–2646, 2001.
[21]  V. di Biase, G. J. Obermair, Z. Szabo et al., “Stable membrane expression of postsynaptic 1.2 calcium channel clusters is independent of interactions with AKAP79/150 and PDZ proteins,” Journal of Neuroscience, vol. 28, no. 51, pp. 13845–13855, 2008.
[22]  M. F. Navedo, E. P. Cheng, C. Yuan et al., “Increased coupled gating of L-type Ca2+ channels during hypertension and timothy syndrome,” Circulation Research, vol. 106, no. 4, pp. 748–756, 2010.
[23]  E. Kobrinsky, P. Abrahimi, S. Q. Duong et al., “Effect of β subunits on structural organization of 1.2 calcium channels,” PLoS One, vol. 4, no. 5, Article ID e5587, 2009.
[24]  Q. Z. Lao, E. Kobrinsky, Z. Liu, and N. M. Soldatov, “Oligomerization of β subunits is an essential correlate of Ca2+ channel activity,” The FASEB Journal, vol. 24, no. 12, pp. 5013–5023, 2010.
[25]  E. Kobrinsky, S. Tiwari, V. A. Maltsev et al., “Differential role of the α1C subunit tails in regulation of the 1.2 channel by membrane potential, β subunits, and Ca2+ ions,” Journal of Biological Chemistry, vol. 280, no. 13, pp. 12474–12485, 2005.
[26]  S. Tiwari, Y. Zhang, J. Heller, D. R. Abernethy, and N. M. Soldatov, “Artherosclerosis-related molecular alteration of the human 1.2 calcium channel α1C subunit,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 45, pp. 17024–17029, 2006.
[27]  I. Splawski, K. W. Timothy, L. M. Sharpe et al., “ 1.2 calcium channel dysfunction causes a multisystem disorder including arrhythmia and autism,” Cell, vol. 119, no. 1, pp. 19–31, 2004.
[28]  Z. Z. Tang, M. C. Liang, S. Lu et al., “Transcript scanning reveals novel and extensive splice variations in human L-type voltage-gated calcium channel, 1.2 α1 subunit,” Journal of Biological Chemistry, vol. 279, no. 43, pp. 44335–44343, 2004.
[29]  P. Liao, T. F. Yong, M. C. Liang, D. T. Yue, and T. W. Soong, “Splicing for alternative structures of 1.2 Ca2+ channels in cardiac and smooth muscles,” Cardiovascular Research, vol. 68, no. 2, pp. 197–203, 2005.
[30]  Y. Blumenstein, N. Kanevsky, G. Sahar, R. Barzilai, T. Ivanina, and N. Dascal, “A novel long N-terminal isoform of human L-type Ca2+ channel is up-regulated by protein kinase C,” Journal of Biological Chemistry, vol. 277, no. 5, pp. 3419–3423, 2002.
[31]  N. M. Soldatov, A. Bouron, and H. Reuter, “Different voltage-dependent inhibition by dihydropyridines of human Ca2+ channel splice variants,” Journal of Biological Chemistry, vol. 270, no. 18, pp. 10540–10543, 1995.
[32]  D. P. Faxon, M. A. Creager, S. C. Smith et al., “Atherosclerotic vascular disease conference: executive summary: atherosclerotic vascular disease conference proceeding for healthcare professionals from a special writing group of the American Heart Association,” Circulation, vol. 109, no. 21, pp. 2595–2604, 2004.
[33]  R. Ross, “Atherosclerosis—an inflammatory disease,” The New England Journal of Medicine, vol. 340, no. 2, pp. 115–126, 1999.
[34]  H. Roy, S. Bhardwaj, and S. Yla-Herttuala, “Molecular genetics of atherosclerosis,” Human Genetics, vol. 125, no. 5-6, pp. 467–491, 2009.
[35]  M. Biel, P. Ruth, E. Bosse et al., “Primary structure and functional expression of a high voltage activated calcium channel from rabbit lung,” FEBS Letters, vol. 269, no. 2, pp. 409–412, 1990.
[36]  X. Cheng, J. Liu, M. Asuncion-Chin et al., “A novel 1.2 N terminus expressed in smooth muscle cells of resistance size arteries modifies channel regulation by auxiliary subunits,” Journal of Biological Chemistry, vol. 282, no. 40, pp. 29211–29221, 2007.
[37]  W. J. Koch, P. T. Ellinor, and A. Schwartz, “cDNA cloning of a dihydropyridine-sensitive calcium channel from rat aorta: evidence for the existence of alternatively spliced forms,” Journal of Biological Chemistry, vol. 265, no. 29, pp. 17786–17791, 1990.
[38]  S. Richard, D. Neveu, G. Carnac, P. Bodin, P. Travo, and J. Nargeot, “Differential expression of voltage-gated Ca2+-currents in cultivated aortic myocytes,” Biochimica et Biophysica Acta, vol. 1160, no. 1, pp. 95–104, 1992.
[39]  A. Schwartz, “Calcium antagonists: review and perspective on mechanism of action,” American Journal of Cardiology, vol. 64, no. 17, pp. 3I–9I, 1989.
[40]  R. P. Mason, “Mechanisms of plaque stabilization for the dihydropyridine calcium channel blocker amlodipine: review of the evidence,” Atherosclerosis, vol. 165, no. 2, pp. 191–199, 2002.
[41]  A. Ruiz-Torres, R. Lozano, J. Melón, and R. Carraro, “L-calcium channel blockade induced by diltiazem inhibits proliferation, migration and F-actin membrane rearrangements in human vascular smooth muscle cells stimulated with insulin and IGF-1,” International Journal of Clinical Pharmacology and Therapeutics, vol. 41, no. 9, pp. 386–391, 2003.
[42]  H. Koshiyama, S. Tanaka, and J. Minamikawa, “Effect of calcium channel blocker amlodipine on the intimal-medial thickness of carotid arterial wall in type 2 diabetes,” Journal of Cardiovascular Pharmacology, vol. 33, no. 6, pp. 894–896, 1999.
[43]  T. Yamashita, S. Kawashima, M. Ozaki et al., “A calcium channel blocker, benidipine, inhibits intimal thickening in the carotid artery of mice by increasing nitric oxide production,” Journal of Hypertension, vol. 19, no. 3, pp. 451–458, 2001.
[44]  R. P. Mason, P. Marche, and T. H. Hintze, “Novel vascular biology of third-generation L-type calcium channel antagonists: ancillary actions of amlodipine,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 23, no. 12, pp. 2155–2163, 2003.
[45]  O. Stepien, J. Gogusev, D. L. Zhu et al., “Amlodipine inhibition of serum-, thrombin-, or fibroblast growth factor- induced vascular smooth-muscle cell proliferation,” Journal of Cardiovascular Pharmacology, vol. 31, no. 5, pp. 786–793, 1998.
[46]  V. Ruiz-Velasco, M. B. Mayer, E. W. Inscho, and L. J. Hymel, “Modulation of dihydropyridine receptors in vascular smooth muscle cells by membrane potential and cell proliferation,” European Journal of Pharmacology, vol. 268, no. 3, pp. 311–318, 1994.
[47]  J. Nilsson, M. Sj?lund, L. Palmberg, A. M. von Euler, B. Jonzon, and J. Thyberg, “The calcium antagonist nifedipine inhibits arterial smooth muscle cell proliferation,” Atherosclerosis, vol. 58, no. 1–3, pp. 109–122, 1985.
[48]  J. Thyberg and L. Palmberg, “The calcium antagonist nisoldipine and the calmodulin antagonist W-7 synergistically inhibit initiation of DNA synthesis in cultured arterial smooth muscle cells,” Biology of the Cell, vol. 60, no. 2, pp. 125–132, 1987.
[49]  E. Munro, M. Patel, P. Chan et al., “Effect of calcium channel blockers on the growth of human vascular smooth muscle cells derived from saphenous vein and vascular graft stenoses,” Journal of Cardiovascular Pharmacology, vol. 23, no. 5, pp. 779–784, 1994.
[50]  T. A. Kent, A. Jazayeri, and J. M. Simard, “Calcium channels and nifedipine inhibition of serotonin-induced [3H]thymidine incorporation in cultured cerebral smooth muscle cells,” Journal of Cerebral Blood Flow and Metabolism, vol. 12, no. 1, pp. 139–146, 1992.
[51]  A. Agrotis, P. J. Little, J. Saltis, and A. Bobik, “Dihydropyridine Ca2+ channel antagonists inhibit the salvage pathway for DNA synthesis in human vascular smooth muscle cells,” European Journal of Pharmacology, vol. 244, no. 3, pp. 269–275, 1993.
[52]  I. Duque, M. R. Puyol, P. Ruiz, M. Gonzalez-Rubio, M. L. D. Marques, and D. R. Puyol, “Calcium channel blockers inhibit hydrogen peroxide-induced proliferation of cultured rat mesangial cells,” Journal of Pharmacology and Experimental Therapeutics, vol. 267, no. 2, pp. 612–616, 1993.
[53]  T. Kuga, S. Kobayashi, Y. Hirakawa, H. Kanaide, and A. Takeshita, “Cell cycle-dependent expression of L- and T-type Ca2+ currents in rat aortic smooth muscle cells in primary culture,” Circulation Research, vol. 79, no. 1, pp. 14–19, 1996.
[54]  E. M. Graf, M. Bock, J. F. Heubach et al., “Tissue distribution of a human 1.2 α1 subunit splice variant with a 75 bp insertion,” Cell Calcium, vol. 38, no. 1, pp. 11–21, 2005.
[55]  P. Liao, D. Yu, S. Lu et al., “Smooth muscle-selective alternatively spliced exon generates functional variation in 1.2 calcium channels,” Journal of Biological Chemistry, vol. 279, no. 48, pp. 50329–50335, 2004.
[56]  O. Skalli, P. Ropraz, and A. Trzeciak, “A monoclonal antibody against α-smooth muscle actin: a new probe for smooth muscle differentiation,” Journal of Cell Biology, vol. 103, no. 6, pp. 2787–2796, 1986.
[57]  T. M. Doherty, K. Asotra, L. A. Fitzpatrick et al., “Calcification in atherosclerosis: bone biology and chronic inflammation at the arterial crossroads,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 20, pp. 11201–11206, 2003.
[58]  G. K. Owens, “Regulation of differentiation of vascular smooth muscle cells,” Physiological Reviews, vol. 75, no. 3, pp. 487–517, 1995.
[59]  J. P. Bannister, A. Adebiyi, G. Zhao et al., “Smooth muscle cell α2δ-1 subunits are essential for vasoregulation by 1.2 channels,” Circulation Research, vol. 105, no. 10, pp. 948–955, 2009.
[60]  S. Sonkusare, M. Fraer, J. D. Marsh, and N. J. Rusch, “Disrupting calcium channel expression to lower blood pressure: new targeting of a well-known channel,” Molecular Interventions, vol. 6, no. 6, pp. 304–310, 2006.
[61]  S. Télémaque, S. Sonkusare, T. Grain et al., “Design of mutant β2 subunits as decoy molecules to reduce the expression of functional Ca2+ channels in cardiac cells,” Journal of Pharmacology and Experimental Therapeutics, vol. 325, no. 1, pp. 37–46, 2008.
[62]  A. Goyenvalle, A. Vulin, F. Fougerousse et al., “Rescue of dystrophic muscle through U7 snRNA-mediated exon skipping,” Science, vol. 306, no. 5702, pp. 1796–1799, 2004.
[63]  D. B. Halling, P. Aracena-Parks, and S. L. Hamilton, “Regulation of voltage-gated Ca2+ channels by calmodulin,” Science's STKE, vol. 2005, no. 315, p. re15, 2005.
[64]  K. S. Lee, E. Marban, and R. W. Tsien, “Inactivation of calcium channels in mammalian heart cells: joint dependence on membrane potential and intracellular calcium,” Journal of Physiology, vol. 364, pp. 395–411, 1985.
[65]  C. Shi and N. M. Soldatov, “Molecular determinants of voltage-dependent slow inactivation of the Ca2+ channel,” Journal of Biological Chemistry, vol. 277, no. 9, pp. 6813–6821, 2002.
[66]  E. Kobrinsky, E. Schwartz, D. R. Abernethy, and N. M. Soldatov, “Voltage-gated mobility of the Ca2+ channel cytoplasmic tails and its regulatory role,” Journal of Biological Chemistry, vol. 278, no. 7, pp. 5021–5028, 2003.
[67]  N. M. Soldatov, “Ca2+ channel moving tail: link between Ca2+-induced inactivation and Ca2+ signal transduction,” Trends in Pharmacological Sciences, vol. 24, no. 4, pp. 167–171, 2003.
[68]  D. J. Klemm, P. A. Watson, M. G. Frid et al., “cAMP response element-binding protein content is a molecular determinant of smooth muscle cell proliferation and migration,” Journal of Biological Chemistry, vol. 276, no. 49, pp. 46132–46141, 2001.
[69]  E. Kobrinsky, L. Stevens, Y. Kazmi, D. Wray, and N. M. Soldatov, “Molecular rearrangements of the 2.1 potassium channel termini associated with voltage gating,” Journal of Biological Chemistry, vol. 281, no. 28, pp. 19233–19240, 2006.
[70]  B. M. Mayr, G. Canettieri, and M. R. Montminy, “Distinct effects of cAMP and mitogenic signals on CREB-binding protein recruitment impart specificity to target gene activation via CREB,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 19, pp. 10936–10941, 2001.
[71]  M. Morad and N. Soldatov, “Calcium channel inactivation: possible role in signal transduction and Ca2+ signaling,” Cell Calcium, vol. 38, no. 3-4, pp. 223–231, 2005.
[72]  D. G. Wheeler, C. F. Barrett, R. D. Groth, P. Safa, and R. W. Tsien, “CaMKII locally encodes L-type channel activity to signal to nuclear CREB in excitation-transcription coupling,” Journal of Cell Biology, vol. 183, no. 5, pp. 849–863, 2008.
[73]  D. E. Mager, E. Kobrinsky, A. Masoudieh, A. Maltsev, D. R. Abernethy, and N. M. Soldatov, “Analysis of functional signaling domains from fluorescence imaging and the two-dimensional continuous wavelet transform,” Biophysical Journal, vol. 93, no. 8, pp. 2900–2910, 2007.
[74]  E. Kobrinsky, D. E. Mager, S. A. Bentil, S. I. Murata, D. R. Abernethy, and N. M. Soldatov, “Identification of plasma membrane macro- and microdomains from wavelet analysis of FRET microscopy,” Biophysical Journal, vol. 88, no. 5, pp. 3625–3634, 2005.
[75]  E. Kobrinsky, S. Q. Duong, A. Sheydina, and N. M. Soldatov, “Microdomain organization and frequency-dependence of CREB-dependent transcriptional signaling in heart cells,” The FASEB Journal, vol. 25, no. 5, pp. 1544–1555, 2011.
[76]  A. Ravindran, Q. Z. Lao, J. B. Harry, P. Abrahimi, E. Kobrinsky, and N. M. Soldatov, “Calmodulin-dependent gating of 1.2 calcium channels in the absence of β subunits,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 23, pp. 8154–8159, 2008.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133