全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Exergetic Model of Secondary Successions for Plant Communities in Arid Chaco (Argentina)

DOI: 10.1155/2013/945190

Full-Text   Cite this paper   Add to My Lib

Abstract:

Ecosystems are open systems where energy fluxes produce modifications over plant communities. According to the state and transition model, plant formations are defined by changes in natural conditions and disturbs. Based on these changes, it is possible to define vectors that show the tendencies of the communities towards other states. Within the subregion of Arid Chaco, mature communities of Aspidosperma quebracho blanco represent the quasistable equilibrium communities or “climax,” similar to that observed in the Chancaní Natural Reserve (Córdoba, Argentina). Biodiversity values and Lyapunov coefficients were calculated based on plant abundance and cover data. Lyapunov coefficients were calculated as the Euclidean distance of each site with respect to reference condition (community of Aspidosperma quebracho blanco), representing for each state the necessary exergy to reach the reference condition. When Lyapunov coefficients decrease in time, it is expected for the system to drive towards a quasistationary state; otherwise, the equilibrium is unstable and becomes less resilient. The diversity of species has a significant effect over the resistance to perturbations but equivocal for the recovery rate. Lyapunov coefficients may be more precise succession indicators than biodiversity indexes, representing the amount of exergy needed for a vegetation state to reach the reference condition. 1. Introduction Ecosystems are open systems that exchange energy with the surrounding environment, modifying among other components the plant frequencies. Based on these changes it is possible to define vectors that show the tendencies of the succession to reach mature or quasistationary states and their modifications by natural or anthropic disturbances [1]. Concepts of succession are based on the observation and the analysis of the system’s states over space and time. The search for a successional theory that can be empirically verified is still ongoing. From the successional theories of Clements [2], Gleason [3], and Tansley [4], there is no reconciliation between multiple aspects of such theories. The first is based fundamentally on a deterministic mechanism where, starting from an initial vegetation state, succession moves by an autoorganization process through distinguishable phases (communities) reaching a “monoclimax” situation. For Gleason, the main defect of this theory is precisely the change of phases from community to community. This author claims for a succession given by the substitution species by species [5]. Tansley developed similar concepts as those

References

[1]  M. S. Karlin, O. A. Bachmeier, A. Dalmasso, J. M. Sayago, and R. Sereno, “Environmental dynamics in salinas grandes, Catamarca, Argentina,” Arid Land Research and Management, vol. 25, no. 4, pp. 328–350, 2011.
[2]  F. E. Clements, Plant Succession: An Analysis of the Development of Vegetation, Carnegie Institute of Washington, USA, 1916.
[3]  H. A. Gleason, “The Structure and development of the plant association,” Bulletin of Torrey Botanical Club, vol. 44, no. 10, pp. 463–481, 1917.
[4]  A. G. Tansley, “The use and abuse of vegetational concepts and terms,” Ecology, vol. 16, no. 3, pp. 284–307, 1935.
[5]  J. Terradas, Ecología de la Vegetación, Omega, Barcelona, Spain, 2001.
[6]  M. Westoby, B. Walker, and I. Noy-Meir, “Opportunistic management for rangelands not at equilibrium,” Journal of Range Management, vol. 42, no. 4, pp. 266–274, 1989.
[7]  C. J. Yates and R. J. Hobbs, “Woodland restoration in the Western Australian wheatbelt: a conceptual framework using a state and transition model,” Restoration Ecology, vol. 5, no. 1, pp. 28–35, 1997.
[8]  P. G. Spooner and K. G. Allcock, “Using a state-and-transition approach to manage endangered Eucalyptus albens (White Box) woodlands,” Environmental Management, vol. 38, no. 5, pp. 771–783, 2006.
[9]  L. Rumpff, D. H. Duncan, P. A. Vesk, D. A. Keith, and B. A. Wintle, “State-and-transition modelling for Adaptive Management of native woodlands,” Biological Conservation, vol. 144, no. 4, pp. 1244–1235, 2011.
[10]  S. E. J?rgensen and Y. M. Svirezhev, Towards A Thermodynamic Theory for Ecological Systems, Elsevier, Amsterdam, The Netherlands, 2004.
[11]  B. C. Patten, “An introduction to the cybernetics of the ecosystem: the trophic-dynamic aspect,” Ecology, vol. 40, no. 2, pp. 221–231, 1959.
[12]  I. Prigogine and I. Stengers, La Nueva Alianza. Metamorfosis de La Ciencia, Alianza Universidad, Madrid, Spain, 2nd edition, 2004.
[13]  E. D. Schneider and J. J. Kay, “Order from disorder: the thermodynamics of complexity in biology,” in What Is Life: The Next Fifty Years. Reflections on the Future of Biology, M. P. Murphy and L. A. J. O'Neill, Eds., pp. 161–172, Cambridge University Press, Cambridge, UK, 1995.
[14]  G. M. Souza, R. V. Ribeiro, M. G. Santos, H. L. Ribeiro, and R. F. Oliveira, “Functional groups of forest succession as dissipative structures: an applied study,” Brazilian Journal of Biology, vol. 64, no. 3B, pp. 707–718, 2004.
[15]  J. Molozzia, F. Salas, M. Callistoa, and J. C. Marques, “Thermodynamic oriented ecological indicators: application of Eco-Exergy and specific Eco-Exergy in capturing environmental changes between disturbed and non-disturbed tropical reservoirs,” Ecological Indicators, vol. 24, pp. 543–551, 2013.
[16]  E. Schr?dinger, ?Qué es la vida?Tusquets Editores, Barcelona, Spain, 1983.
[17]  M. L. Carranza, M. R. Cabido, A. Acosta, and S. A. Páez, “Las comunidades vegetales del Parque Natural Chancaní, Provincia de Córdoba,” Lilloa, vol. 38, pp. 75–92, 1992.
[18]  R. G. Capitanelli, “Clima,” in Geografía Fsica de la Provincia de Córdoba, J. B. Vázquez, R. A. Miatello, and M. E. Roqué, Eds., pp. 45–138, Editorial Boldt, Córdoba, Argentina, 1979.
[19]  D. Mueller-Dombois and H. Ellenberg, in Aims & Methods of Vegetation Ecology, John Wiley & Sons, US, 1974.
[20]  J. Braun-Blanquet, Fitosociología. Bases para el estudio de las comunidades vegetales, Blume, Madrid, Spain, 1979.
[21]  D. A. Wikum and G. F. Shanholtzer, “Application of the Braun-Blanquet cover-abundance scale for vegetation analysis in land development studies,” Environmental Management, vol. 2, no. 4, pp. 323–329, 1978.
[22]  J. Di Rienzo, F. Casanoves, L. Gonzalez, M. Tablada, C. Robledo, and M. Balzarini, “Infostat,” Facultad de Ciencias Agropecuarias, Universidad Nacional de Córdoba. Statistical software, 2007.
[23]  J. Justus, “Ecological and Lyapunov stability,” Philosophy of Science, vol. 75, no. 4, pp. 421–436, 2008.
[24]  E. E. Bonino and P. Araujo, “Structural differences between a primary and a secondary forest in the Argentine Dry Chaco and management implications,” Forest Ecology and Management, vol. 206, no. 1–3, pp. 407–412, 2005.
[25]  M. D. R. Iglesias, A. Barchuk, and M. P. Grilli, “Carbon storage, community structure and canopy cover: a comparison along a precipitation gradient,” Forest Ecology and Management, vol. 265, pp. 218–229, 2012.
[26]  C. S. Holling, “Cross-scale morphology, geometry, and dynamics of ecosystems,” Ecological Monographs, vol. 62, no. 4, pp. 447–502, 1992.
[27]  U. O. Karlin, M. Karlin, and E. J. Ruiz Posse, “Ambientes y vegetación,” in Manejo Sustentable del Ecosistema Salinas Grandes, Chaco árido, R. Coirini, M. Karlin, and G. Reati, Eds., pp. 91–118, Encuentro, Córdoba, Argentina, 2010.
[28]  H. Calella and R. R. Corzo, El Chaco árido de La Rioja. Vegetación y suelos. Pastizales naturales, Ediciones INTA, Buenos Aires, Argentina, 2006.
[29]  D. L. Anderson, J. A. Del águila, and A. E. Bernardón, “Las formaciones vegetales en la Provincia de San Luis,” Revista de Investigaciones Agropecuarias, vol. VII, no. 3, pp. 153–183, 1970.
[30]  J. Morello, “Provincia fitogeográfica del monte,” Opera Lilloana, vol. 2, pp. 1–155, 1958.
[31]  L. Catalán, Crecimiento le?oso de Prosopis flexuosa en una sucesión post-agrícola en el Chaco árido: efectos y relaciones de distintos factores de proximidad [Ph.D. thesis], FCEFyN-UNC, Córdoba, Argentina, 2000.
[32]  S. A. Páez and D. E. Marco, “Seedling habitat structure in dry Chaco forest (Argentina),” Journal of Arid Environments, vol. 46, no. 1, pp. 57–68, 2000.
[33]  A. H. Barchuk, M. D. R. Iglesias, and M. N. Boetto, “Spatial association of Aspidosperma quebracho-blanco juveniles with shrubs and conspecific adults in the Arid Chaco, Argentina,” Austral Ecology, vol. 33, no. 6, pp. 775–783, 2008.
[34]  D. Tilman, “Biodiversity: population versus ecosystem stability,” Ecology, vol. 77, no. 2, pp. 350–363, 1996.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133