全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Clinical and Radiographic Comparison of Oxidized Zirconium and Cobalt Chrome Femoral Components of a Single Design Primary Total Knee Arthroplasty: Is the Cost Difference Justified Based on Patient Outcomes?

DOI: 10.5402/2013/174298

Full-Text   Cite this paper   Add to My Lib

Abstract:

A review of 120 consecutive total knee arthroplasty patient records was made comparing oxidized zirconium with traditional cobalt chrome alloy femoral components and assessing the clinical and radiographic outcomes of each. The direct hospital implant cost for each of these implant systems was obtained and assessed in the context of any difference in patient Knee Society Scores, knee flexion, pain, probability of metal allergy, and radiographic signs of pending implant failures. At an average of 5.6-year followup (1–11-year range in both groups), the data showed no clinical or radiological variance between the two groups, while the hospital direct implant cost with the oxidized zirconium femoral component was $1900 higher than the cobalt chrome implants. Considering the cost difference between the implants and the lack of a difference in outcomes at an average of 5-6 years of followup, this paper brings into question the ability to justify the use of oxidized zirconium femoral components based solely on improved patient outcomes. 1. Introduction The volume of joint arthroplasty procedures performed each year has steadily increased over time, with primary total knee arthroplasty (TKA) projected to increase by 673%, from 450,000 in 2005 to 3.48 million procedures in 2030 [1]. With the increased population of active and aging baby-boomers qualifying for Medicare and the changes to the health care system implemented by the Affordable Care Act, providers and policy makers must make decisions on procedures and products that are both clinically effective and cost efficient. Advances in TKA technology have introduced new materials aimed at providing quicker recovery, hypoallergenic properties, and improved prosthesis survivorship. Oxidized zirconium is a relatively new material consisting of a zirconium alloy (Zr-2.5Nb) core that has been oxidized to produce a zirconia (ZrO2) ceramic-like surface. Knee simulator studies have demonstrated the proposed benefits of oxidized zirconium, which include less nickel exposure and improved wear properties, such as increased hardness, decreased surface roughness, and increased resistance to abrasion, adhesion, and delamination compared to cobalt-chromium-molybdenum (CoCrMo) [2–9]. Several in vivo studies have been published concerning the clinical effectiveness and wear performance of oxidized zirconium femoral components [7, 10, 11]; however, many have reported similar clinical outcomes for the oxidized zirconium in comparison to the traditional CoCrMo alloy [12–15]. Since oxidized zirconium requires a more complex

References

[1]  S. Kurtz, K. Ong, E. Lau, F. Mowat, and M. Halpern, “Projections of primary and revision hip and knee arthroplasty in the United States from 2005 to 2030,” The Journal of Bone and Joint Surgery A, vol. 89, no. 4, pp. 780–785, 2007.
[2]  M. Spector, M. D. Ries, R. B. Bourne, W. S. Sauer, M. Long, and G. Hunter, “Wear performance of ultra-high molecular weight polyethylene, on oxidized zirconium total knee femoral components,” The Journal of Bone and Joint Surgery A, vol. 83, no. 2, pp. S80–S86, 2001.
[3]  J. A. Davidson, C. M. Asgian, A. K. Mishra, and P. Kovacs, “Zirconia (ZrO2)-coated zirconium-2.5 Nb alloy for prosthetic knee bearing applications,” Bioceramics, vol. 5, pp. 389–401, 1992.
[4]  M. C. Galetz, E. W. Fleischmann, C. H. Konrad, A. Schuetz, and U. Glatzel, “Abrasion resistance of oxidized zirconium in comparison with CoCrMo and titanium nitride coatings for artificial knee joints,” Journal of Biomedical Materials Research B, vol. 93, no. 1, pp. 244–251, 2010.
[5]  M. C. Galetz, S. H. Seiferth, B. Theile, and U. Glatzel, “Potential for adhesive wear in friction couples of UHMWPE running against oxidized zirconium, titanium nitride coatings, and cobalt-chromium alloys,” Journal of Biomedical Materials Research B, vol. 93, no. 2, pp. 468–475, 2010.
[6]  J. D. DesJardins, B. Burnikel, and M. LaBerge, “UHMWPE wear against roughened oxidized zirconium and CoCr femoral knee components during force-controlled simulation,” Wear, vol. 264, no. 3-4, pp. 245–256, 2008.
[7]  T. J. Heyse, D. X. Chen, N. Kelly, F. Boettner, T. M. Wright, and S. B. Haas, “Matched-pair total knee arthroplasty retrieval analysis: oxidized zirconium versus CoCrMo,” The Knee, vol. 18, no. 6, pp. 448–452, 2011.
[8]  M. D. Ries, A. Salehi, K. Widding, and G. Hunter, “Polyethylene wear performance of oxidized zirconium and cobalt-chromium knee components under abrasive conditions,” The Journal of Bone and Joint Surgery A, vol. 84, no. 2, pp. 129–135, 2002.
[9]  S. E. White, L. A. Whiteside, D. S. McCarthy, M. Anthony, and R. A. Poggie, “Simulated knee wear with cobalt chromium and oxidized zirconium knee femoral components,” Clinical Orthopaedics and Related Research, no. 309, pp. 176–184, 1994.
[10]  R. S. Laskin, “An oxidized Zr ceramic surfaced femoral component for total knee arthroplasty,” Clinical Orthopaedics and Related Research, no. 416, pp. 191–196, 2003.
[11]  J. M. Brandt, L. Guenther, S. O'Brien, A. Vecherya, T. R. Turgeon, and E. R. Bohm, “Performance assessment of femoral knee components made from cobalt-chromium alloy and oxidized zirconium,” The Knee, vol. 20, no. 6, pp. 388–396, 2013.
[12]  M. Innocenti, R. Civinini, C. Carulli, F. Matassi, and M. Villano, “The 5-year results of an oxidized zirconium femoral component for TKA,” Clinical Orthopaedics and Related Research, vol. 468, no. 5, pp. 1258–1263, 2010.
[13]  C. Hui, L. Salmon, S. Maeno, J. Roe, W. Walsh, and L. Pinczewski, “Five-year comparison of oxidized zirconium and cobalt-chromium femoral components in total knee arthroplasty a randomized controlled trial,” The Journal of Bone and Joint Surgery A, vol. 93, no. 7, pp. 624–630, 2011.
[14]  Y. H. Kim, J. W. Park, and J. S. Kim, “Comparison of the genesis II total knee replacement with oxidised zirconium and cobalt-chromium femoral components in the same patients: a Prospective, Double-blind, Randomized Controlled Study,” The Journal of Bone and Join Surgery, vol. 94, no. 9, pp. 1–7, 2012.
[15]  M. C. Inacio, G. Cafri, E. W. Paxton, S. M. Kurtz, and R. S. Namba, “Alternative bearings in total knee arthroplasty: risk of early revision compared to traditional bearings: an analysis of 62, 177 primary cases,” Acta Orthopaedica, vol. 84, no. 2, pp. 145–152, 2013.
[16]  J. N. Insall, L. D. Dorr, R. D. Scott, and W. N. Scott, “Rationale of the knee society clinical rating system,” Clinical Orthopaedics and Related Research, no. 248, pp. 13–14, 1989.
[17]  X. Gao, R.-X. He, S.-G. Yan, and L.-D. Wu, “Dermatitis associated with chromium following total knee arthroplasty,” The Journal of Arthroplasty, vol. 26, no. 4, pp. 665.e13–665.e16, 2011.
[18]  P. Thomas, M. Thomas, B. Summer et al., “Impaired wound-healing, local eczema, and chronic inflammation following titanium osteosynthesis in a nickel and cobalt-allergic patient,” The Journal of Bone and Joint Surgery A, vol. 93, no. 11, article e61, pp. 1–5, 2011.
[19]  S. K. Gupta, A. Chu, A. S. Ranawat, J. Slamin, and C. S. Ranawat, “Review article: osteolysis after total knee arthroplasty,” The Journal of Arthroplasty, vol. 22, no. 6, pp. 787–799, 2007.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413