Rice straw is a renewable, cheap, and abundant waste in tropical countries. The pentose content of rice straw can be used as a substrate for many types of value-added products such as xylitol and biofuel. Dilute acid hydrolysis mainly releases pentose from rice straw. The objective of the study was to determine the effect of H2SO4 concentration and reaction time on the xylose production. The variation of the main product xylose with the reaction time was described by a kinetic model and kinetic parameters were calculated to describe the variation of the xylose production with time. The optimum yield (19.35?g/L) was obtained at 0.24?mol/L H2SO4 and 30 minutes. 1. Introduction Rice straw is one of the most abundant agricultural wastes. For instance, approximately 731 million tons per year rice straw is produced globally (Africa: 20.9 million tons, Asia: 667.6 million tons, Europe: 3.9 million tons, America: 37.2 million tons 61, and Oceania: 1.7 million tons) [1]. Nearly 600 million tons of agricultural residues are produced by India annually; out of which, approximately 300 million tons of it remain unused. The options for the disposal of rice straw are limited by the great bulk of material, slow degradation in the soil, harboring of rice stem diseases, and high mineral content. Though rice straw is used as animal feed and soil fertilizer, the utilization ratio remains low compared to other straws. Rice straw has low digestibility value as animal feed. Although rice straws contain materials for social benefit, their apparent value is less than the cost of collection, transportation, and processing for beneficial use. Open-field burning is a major practice for rice straw disposal. It causes air pollution, a threat to human health [2]. Rice straw contains 19–27% of hemicellulose, a heteropolymer composed mainly of xylose followed by arabinose [3, 4]. The hemicellulosic and cellulosic contents of rice straw can be hydrolyzed chemically or enzymatically. Chemical hydrolysis includes dilute sulfuric acid hydrolysis that can be used for either the pretreatment before enzymatic hydrolysis or the conversion of hemicellulose to pentose [5] remaining cellulose and lignin fractions being almost unaltered. Lignocellulosic structure as well as hydrolysis reactions of sugar polymers in a dilute acid medium is very complicated. The substrate is in the solid phase and the catalyst in the liquid phase. Various factors (particle size, liquid to solid ratio, type and concentration of acid used, temperature, and reaction time) influence monomer yield [6]. In the present
References
[1]
K. Karimi, G. Emtiazi, and M. J. Taherzadeh, “Ethanol production from dilute-acid pretreated rice straw by simultaneous saccharification and fermentation with Mucor indicus, Rhizopus oryzae, and Saccharomyces cerevisiae,” Enzyme and Microbial Technology, vol. 40, no. 1, pp. 138–144, 2006.
[2]
N. Sarkar, S. K. Ghosh, S. Bannerjee, and K. Aikat, “Bioethanol production from agricultural wastes: an overview,” Renewable Energy, vol. 37, no. 1, pp. 19–27, 2012.
[3]
H. G. E. Masry, “Utilization of Egyptian rice straw in production of celluloses and microbial protein: effect of various pretreatments on yields of protein and enzyme activity,” Journal of the Science of Food and Agriculture, vol. 34, pp. 725–732, 1983.
[4]
R. C. Kuhad and A. Singh, “Lignocellulose biotechnology: current and future prospects,” Critical Reviews in Biotechnology, vol. 13, pp. 151–172, 1993.
[5]
M. J. Taherzadeh, Ethanol from lignocellulose: physiological effects of inhibitors and fermentation strategies [Ph.D. thesis], Chalmers University of Technology, G?teborg, Sweden, 1999.
[6]
M. J. Taherzadeh, C. Niklasson, and G. Lidén, “Acetic acid—friend or foe in anaerobic batch conversion of glucose to ethanol by Saccharomyces cerevisiae,” Chemical Engineering Science, vol. 52, no. 15, pp. 2653–2659, 1997.
[7]
S. Sadasivam and A. Manickam, Biochemical Methods, New Age, New Delhi, India, 3rd edition, 2008.
[8]
N. Yoswathana, P. Phuriphipat, P. Treyawutthiwat, and M. N. Eshtiaghi, “Bioethanol production from rice straw,” Energy Research Journal, vol. 1, no. 1, pp. 26–31, 2010.
[9]
T. J. Eberts, R. H. B. Sample, M. R. Glick, and G. H. Ellis, “A simplified, colorimetric micromethod for xylose in serum or urine, with phloroglucinol,” Clinical Chemistry, vol. 25, no. 8, pp. 1440–1443, 1979.
[10]
C. J. Israilides, G. A. Grant, and Y. W. Han, “Sugar level, fermentability, and acceptability of straw treated with different acids,” Applied and Environmental Microbiology, vol. 36, no. 1, pp. 43–46, 1978.
[11]
J. M. Hernández-Salas, M. S. Villa-Ramírez, J. S. Veloz-Rendón et al., “Comparative hydrolysis and fermentation of sugarcane and agave bagasse,” Bioresource Technology, vol. 100, pp. 1238–1245, 2009.
[12]
J. F. Saeman, “Kinetics of wood saccharification. Hydrolysis of cellulose and decomposition of sugars in dilute acid at high temperature,” Industrial and Engineering Chemistry, vol. 37, pp. 43–52, 1945.
[13]
R. Aguilar, J. A. Ramírez, G. Garrote, and M. Vázquez, “Kinetic study of the acid hydrolysis of sugar cane bagasse,” Journal of Food Engineering, vol. 55, pp. 309–318, 2002.
[14]
S. J. Téllez-Luis, J. A. Ramírez, and M. Vázquez, “Mathematical modelling of hemicellulosic sugar production from sorghum straw,” Journal of Food Engineering, vol. 52, pp. 285–291, 2002.
[15]
K. Karimi, S. Kheradmandinia, and M. J. Taherzadeh, “Conversion of rice straw to sugars by dilute-acid hydrolysis,” Biomass and Bioenergy, vol. 30, no. 3, pp. 247–253, 2006.
[16]
K. Y. Foo and B. H. Hameed, “Insights into the modeling of adsorption isotherm systems,” Chemical Engineering Journal, vol. 156, pp. 2–10, 2010.
[17]
L. C. Duarte, T. S. Fernandes, F. Carvalheiro, and F. M. Gírio, “Dilute acid hydrolysis of wheat straw oligosaccharides,” Applied Biochemistry and Biotechnology, vol. 153, pp. 116–126, 2009.