全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Optimization Study on Supercritical Electrodeposition of Nickel Nanowire Arrays Using AAO Template

DOI: 10.5402/2012/610510

Full-Text   Cite this paper   Add to My Lib

Abstract:

Highly ordered and nanometer-scaled nickel wire arrays were successfully prepared by supercritical electrodeposition method using anodized aluminum oxide (AAO) template. The results show that the well-ordered and free-standing nickel nanowire arrays can be constructed uniformly on a titanium-coated silicon wafer after removing the AAO template. The diameter and length of the nickel nanowire in the arrays can be obtained, about 100?nm and 10?um, respectively. Based on Box-Behnken design and Response Surface Methodology (RSM), a regression model was built by fitting the experimental results with a polynomial equation. The current density, pressure, and temperature are critical important factors of the growth mechanism of deposited nanowires. The optimal length of nanowires, 10.03?μm, can be achieved at the following conditions: current density 0.23?A/cm2, pressure 107?bar, and temperature 53°C. 1. Introduction One of the most important challenges in materials science and technology today is the preparation of ordered nanostructure arrays with controlled properties and dimensions for industrial application [1]. It is of great interest in the trend toward miniaturization and densification of electronic parts and components which tend to become smaller in size with a larger number of individual devices [2]. Thus, porous alumina films and nanocomposites based on AAO membranes could be used as perfect model objects for a deeper understanding of processes on nanoscaled in spatially ordered systems [3]. Several reports have been published on nanowire arrays-filled porous AAO films, for materials including single-metal nanowires [4], ferromagnetic alloy nanowires [5], and multilayered nanowires [6]. Electrodeposition of metal or alloy in AAO pores needs to stabilize an electric current distribution during operation owing to the high aspect ratio of AAO pores [7]. A common problem exists during electroplating, which is the electric current also causing the dissociation of water in addition to the electrolysis of metal ions due to the handicap of solution transport in nanometer space. The dissociation of water may create several defects on the growth mechanism of deposited metal alloy [8]. Due to the low viscosity, high diffusivity, and zero surface tension nature of supercritical carbon dioxide (Sc-CO2), plating technology with Sc-CO2 has attracted special attention because Sc-CO2, in particular, can transport the solute into fine nanometer space of the materials without shrinking or causing other harm due to the interface tension that exists between liquids and

References

[1]  O. Jessensky, F. Müller, and U. G?sele, “Self-organized formation of hexagonal pore structures in anodic alumina,” Journal of the Electrochemical Society, vol. 145, no. 11, pp. 3735–3740, 1998.
[2]  L. Wang, K. Yu-Zhang, A. Metrot, P. Bonhomme, and M. Troyon, “TEM study of electrodeposited Ni/Cu multilayers in the form of nanowires,” Thin Solid Films, vol. 288, no. 1-2, pp. 86–89, 1996.
[3]  S. Valizadeh, J. M. George, P. Leisner, and L. Hultman, “Electrochemical synthesis of Ag/Co multilayered nanowires in porous polycarbonate membranes,” Thin Solid Films, vol. 402, no. 1-2, pp. 262–271, 2002.
[4]  H. Zeng, M. Zheng, R. Skomski et al., “Magnetic properties of self-assembled Co nanowires of varying length and diameter,” Journal of Applied Physics, vol. 87, no. 9, pp. 4718–4720, 2000.
[5]  D. H. Qin, L. Cao, Q. Y. Sun, Y. Huang, and H. L. Li, “Fine magnetic properties obtained in FeCo alloy nanowire arrays,” Chemical Physics Letters, vol. 358, no. 5-6, pp. 484–488, 2002.
[6]  R. E. Benfield, D. Grandjean, J. C. Dore et al., “Structure of assemblies of metal nanowires in mesoporous alumina membranes studied by EXAFS, XANES, X-ray diffraction and SAXS,” Faraday Discussions, vol. 125, pp. 327–342, 2004.
[7]  A. Caba?as, D. P. Long, and J. J. Watkins, “Deposition of gold films and nanostructures from supercritical carbon dioxide,” Chemistry of Materials, vol. 16, no. 10, pp. 2028–2033, 2004.
[8]  K. Nielsch, R. B. Wehrspohn, J. Barthel et al., “Hexagonally ordered 100 nm period nickel nanowire arrays,” Applied Physics Letters, vol. 79, no. 9, pp. 1360–1362, 2001.
[9]  H. Yoshida, M. Sone, H. Wakabayashi et al., “New electroplating method of nickel in emulsion of supercritical carbon dioxide and electroplating solution to enhance uniformity and hardness of plated film,” Thin Solid Films, vol. 446, no. 2, pp. 194–199, 2004.
[10]  B. K. K?rbahti and M. A. Rauf, “Response surface methodology (RSM) analysis of photoinduced decoloration of toludine blue,” Chemical Engineering Journal, vol. 136, no. 1, pp. 25–30, 2008.
[11]  D. Kim, J. Kim, G. L. Wang, and C. C. Lee, “Nucleation and growth of intermetallics and gold clusters on thick tin layers in electroplating process,” Materials Science and Engineering A, vol. 393, no. 1-2, pp. 315–319, 2005.
[12]  L. P. Bicelli, B. Bozzini, C. Mele, and L. D'Urzo, “A review of nanostructural aspects of metal electrodeposition,” International Journal of Electrochemical Science, vol. 3, no. 4, pp. 356–408, 2008.
[13]  A. Dean and D. Voss, “Response surface methodology,” in Design and Analysis of Experiments, Springer, New York, NY, USA, 1999.
[14]  M. S. Kim, J. Y. Kim, C. K. Kim, and N. K. Kim, “Study on the effect of temperature and pressure on nickel-electroplating characteristics in supercritical CO2,” Chemosphere, vol. 58, no. 4, pp. 459–465, 2005.
[15]  H. Yoshida, M. Sone, A. Mizushima et al., “Electroplating of nanostructured nickel in emulsion of supercritical carbon dioxide in electrolyte solution,” Chemistry Letters, no. 11, pp. 1086–1087, 2002.
[16]  B. Oraon, G. Majumdar, and B. Ghosh, “Parametric optimization and prediction of electroless Ni-B deposition,” Materials and Design, vol. 28, no. 7, pp. 2138–2147, 2007.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133