全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Application of Artificial Neural Network in Simulation of Supercritical Extraction of Valerenic Acid from Valeriana officinalis L.

DOI: 10.5402/2012/572421

Full-Text   Cite this paper   Add to My Lib

Abstract:

Application of artificial neural network (ANN) has been studied for simulation of the extraction process by supercritical CO2. Supercritical extraction of valerenic acid from Valeriana officianalis L. has been studied and simulated according to the significant operational parameters such as pressure, temperature, and dynamic extraction time. ANN, using multilayer perceptron (MLP) model, is employed to predict the amount of extracted VA versus the studied variables. Three tests, validation, and training data sets in three various scenarios are selected to predict the amount of extracted VA at dynamic time of extraction, working pressure, and temperature values. Levenberg-Marquardt algorithm has been employed to train the MLP network. The model in first scenario has three neurons in one hidden layer, and the models associated with the second and the third scenarios have four neurons in one hidden layer. The determination coefficients are calculated as 0.971, 0.940, and 0.964 for the first, second, and the third scenarios, respectively, demonstrating the effectiveness of the MLP model in simulating this process using any of the scenarios, and accurate prediction of extraction yield has been revealed in different working conditions of pressure, temperature, and dynamic time of extraction. 1. Introduction Valerian essential oils or extracts of valerian root have since long been used as sedatives. Therefore, extensive studies have been performed on the extract of the valerian root in recent years [1, 2]. These studies have revealed antispasm and sedative properties of the valerian [3–5], and attributed medical properties of the valerian mainly to valerenic acid (VA) [5]. Due to these findings, VA is used in formulation of many drugs and cosmetic products. Different methods have been employed for the extraction of the valerian root extract [6, 7], which are divided into two major categories. Hydrodistillation as the first category is inexpensive and easy to implement. However, its main disadvantage lies in operating at the boiling point of water, leading to the loss of many water-sensitive or temperature-sensitive combinations. Supercritical fluid extraction (SFE) in the second category has been recently used for the extraction of the natural materials to a great extent [6–9]. Working at lower temperatures, fast speed of the process, use of clean inexpensive fluid, and easy separation of the products are the main suitable features of SFE. Although the SFE is more costly compared to other methods such as hydrodistillation, its distinctive properties have made

References

[1]  X. Q. Gao and L. Bj?rk, “Valerenic acid derivatives and valepotriates among individuals, varieties and species of Valeriana,” Fitoterapia, vol. 71, no. 1, pp. 19–24, 2000.
[2]  I. Zizovic, M. Stameni?, J. Ivanovi? et al., “Supercritical carbon dioxide extraction of sesquiterpenes from valerian root,” Journal of Supercritical Fluids, vol. 43, no. 2, pp. 249–258, 2007.
[3]  S. Khom, I. Baburin, E. Timin et al., “Valerenic acid potentiates and inhibits GABAA receptors: molecular mechanism and subunit specificity,” Neuropharmacology, vol. 53, no. 1, pp. 178–187, 2007.
[4]  B. M. Dietz, G. B. Mahady, G. F. Pauli, and N. R. Farnsworth, “Valerian extract and valerenic acid are partial agonists of the 5-HT5a receptor in vitro,” Molecular Brain Research, vol. 138, no. 2, pp. 191–197, 2005.
[5]  D. Benke, A. Barberis, S. Kopp et al., “GABAA receptors as in vivo substrate for the anxiolytic action of valerenic acid, a major constituent of valerian root extracts,” Neuropharmacology, vol. 56, no. 1, pp. 174–181, 2009.
[6]  A. Safaralie, S. Fatemi, and F. Sefidkon, “Essential oil composition of Valeriana officinalis L. roots cultivated in Iran. Comparative analysis between supercritical CO2 extraction and hydrodistillation,” Journal of Chromatography A, vol. 1180, no. 1-2, pp. 159–164, 2008.
[7]  Z. Hromádková, A. Ebringerová, and P. Valachovi?, “Ultrasound-assisted extraction of water-soluble polysaccharides from the roots of valerian (Valeriana officinalis L.),” Ultrasonics Sonochemistry, vol. 9, no. 1, pp. 37–44, 2002.
[8]  L. Zhiyi, L. Xuewu, C. Shuhua et al., “An experimental and simulating study of supercritical CO2 extraction for pepper oil,” Chemical Engineering and Processing: Process Intensification, vol. 45, no. 4, pp. 264–267, 2006.
[9]  L. Vázquez, A. M. Hurtado-Benavides, G. Reglero, T. Fornari, E. Ibá?ez, and F. J. Se?oráns, “Deacidification of olive oil by countercurrent supercritical carbon dioxide extraction: experimental and thermodynamic modeling,” Journal of Food Engineering, vol. 90, no. 4, pp. 463–470, 2009.
[10]  J. M. Del Valle, J. C. De La Fuente, and D. A. Cardarelli, “Contributions to supercritical extraction of vegetable substrates in Latin America,” Journal of Food Engineering, vol. 67, no. 1-2, pp. 35–57, 2005.
[11]  S. Espinosa, M. S. Diaz, and E. A. Brignole, “Food additives obtained by supercritical extraction from natural sources,” Journal of Supercritical Fluids, vol. 45, no. 2, pp. 213–219, 2008.
[12]  W. Wu and Y. Hou, “Mathematical modeling of extraction of egg yolk oil with supercritical CO2,” Journal of Supercritical Fluids, vol. 19, no. 2, pp. 149–159, 2001.
[13]  E. M. C. Reis-Vasco, J. A. P. Coelho, A. M. F. Palavra, C. Marrone, and E. Reverchon, “Mathematical modelling and simulation of pennyroyal essential oil supercritical extraction,” Chemical Engineering Science, vol. 55, no. 15, pp. 2917–2922, 2000.
[14]  M. J. Kamali and M. Mousavi, “Analytic, neural network, and hybrid modeling of supercritical extraction of α-pinene,” Journal of Supercritical Fluids, vol. 47, no. 2, pp. 168–173, 2008.
[15]  M. Izadifar and F. Abdolahi, “Comparison between neural network and mathematical modeling of supercritical CO2 extraction of black pepper essential oil,” Journal of Supercritical Fluids, vol. 38, no. 1, pp. 37–43, 2006.
[16]  M. Fullana, F. Trabelsi, and F. Recasens, “Use of neural net computing for statistical and kinetic modelling and simulation of supercritical fluid extractors,” Chemical Engineering Science, vol. 55, no. 1, pp. 79–95, 2000.
[17]  O. Nelles, Nonlinear System Identification from Classical Approaches to Neural Networks and Fuzzy Models, Springer, 2001.
[18]  A. N. Mustapa, Z. Abdul Manan, and C. Y. M. Azizi, “Subcritical and supercritical fluid extraction: a critical review of its analytical usefulness,” Journal of Chemical and Natural Resources Engineering, vol. 2, pp. 164–180, 2008.
[19]  A. Moghadassi, S. M. Hosseini, F. Parvizian, I. Al-Hajri, and M. Talebbeigi, “Predicting the supercritical carbon dioxide extraction of oregano bract essential oil,” Songklanakarin Journal of Science and Technology, vol. 33, no. 5, pp. 531–538, 2011.
[20]  M. T. Hagan and M. B. Menhaj, “Training feedforward networks with the Marquardt algorithm,” IEEE Transactions on Neural Networks, vol. 5, no. 6, pp. 989–993, 1994.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133