全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Analysis of Energy Characteristics of Rice and Coffee Husks Blends

DOI: 10.1155/2014/196103

Full-Text   Cite this paper   Add to My Lib

Abstract:

Production of first generation biofuels using food crops is under criticism over sustainability issues on food security. Tanzania is showing active interest in developing second generation biofuels to deal with some of such issues, especially from the feedstock point of view. This paper reports work done to determine energy characteristics of rice and coffee husks. The results show that coffee husks have better energy quality than rice husks, while heating values of coffee are 18.34?MJ/kg and 13.24?MJ/kg for rice husk. Thermogravimetric analysis made for coffee husks blended rice husks at a ratio of 75?:?25% vol. show better material degradation characteristics yielding low residual mass of 23.65%, compared to 26.50% of char and ash remaining in pure rice husks. Derivative thermogravimetric analysis shows comparable hemicellulose degradation peak values of ?11.5 and ?11.2 and cellulose ?3.20 and ?2.90 in pure coffee and rice husks, respectively. In coffee and rice husks blends, substantial reductions of hemicellulose and cellulose peaks were observed. Use of coffee and rice husks blends applying high temperature gasification would reduce the latter’s flammability, while increasing its flame retention characteristics, hence offering opportunities for production of clean syngas in a sustainable manner. 1. Introduction 1.1. Background and Goal For many years, we have consumed fossil fuels with no worries about possible shortages, but, now, those same oil fields are running dry, while use of coal as a source of energy is also facing criticisms due to its contribution on environmental pollution. In view of this situation, there has been a growing impetus looking for alternative sources of energy for the future. Biomass based second generation biofuels could partly assist to resolve some of these issues, especially from the feedstock point of view for energy production applying various conversion methods to improve the combustion efficiency. The advantages of using biomass are obvious as this material, is generally left to rot or burnt in an uncontrolled manner, producing CO2 as well as smoke. Most African countries are facing problems of inadequate access to modern sources of energy. The United Republic of Tanzania being one of the sub-Saharan African countries is showing active interest in the development of the second generation biofuels, especially from the feedstock point of view to address criticism over sustainability issues as well as arguments on food security arising from the production of 1st generation biofuels derived from food crops materials to

References

[1]  Ministry of Agriculture Food Security and The United Republic of Tanzania, “Agriculture Sector Development,” 2001.
[2]  S. Gaur and T. B. Reed, Thermal Data for Natural and Synthetic Fuels, Marcel Dekker, NewYork, NY, USA, 1998.
[3]  I. Obernberger, F. Biedermann, W. Widmann, and R. Riedl, “Concentrations of inorganic elements in biomass fuels and recovery in the different ash fractions,” Biomass & Bioenergy, vol. 12, no. 3, pp. 211–224, 1997.
[4]  W. J. Chancellor, C. N. Thai, and T. W. Lin, “Potential of char for marketing agricultural residue energy,” ASAE Paper 81-3054, American Society of Agricultural Engineers, St. Joseph, Mich, USA, 1981.
[5]  B. M. Jenkins and J. M. Ebeling, “Correlation of physical properties of terrestrial biomass with conversion,” in Proceedings of the 10th Energy from Biomass and Wastes, Institute of Gas Technology, Chicago, Ill, USA, 1985.
[6]  A. Faaij, J. van Doorn, T. Curvers et al., “Characteristics and availability of biomass waste and residues in the Netherlands for gasification,” Biomass & Bioenergy, vol. 12, no. 4, pp. 225–240, 1997.
[7]  D. Vamvuka and D. Zografos, “Predicting the behaviour of ash from agricultural wastes during combustion,” Fuel, vol. 83, no. 14-15, pp. 2051–2057, 2004.
[8]  V. Cozzani, L. Petarca, and L. Tognotti, “Devolatilization and pyrolysis of refuse derived fuels: characterization and kinetic modelling by a thermogravimetric and calorimetric approach,” Fuel, vol. 74, no. 6, pp. 903–912, 1995.
[9]  J. M. Heikkinen, J. C. Hordijk, W. de Jong, and H. Spliethoff, “Thermogravimetry as a tool to classify waste components to be used for energy generation,” Journal of Analytical and Applied Pyrolysis, vol. 71, no. 2, pp. 883–900, 2004.
[10]  A. J. Tsamba, W. Yang, and W. Blasiak, “Pyrolysis characteristics and global kinetics of coconut and cashew nut shells,” Fuel Processing Technology, vol. 87, no. 6, pp. 523–530, 2006.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133