全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Effect of Material Property in Foundation during Earthquake on the Embankment

DOI: 10.5402/2012/629369

Full-Text   Cite this paper   Add to My Lib

Abstract:

The dynamic analysis process started after any loss of embankment with associated huge damages like cracks during the earthquake. Literature review indicated that the maximum displacement during the earthquake is conducted to the crest and interface between the embankment with water reservoir, and foundations were cased. This paper evaluated the effect of material properties of the foundation for the two conditions so the result is related at the end of construction with supplying water. Numerical analyses of models were performed by finite element with plane strain method and ANSYS13 software. Earthquake recording as Nagan with 5.02 seconds and peak ground acceleration equal to is used. Results indicated that with a comparison of horizontal and vertical displacement, shear strain and shear stress so nonisotropic behavior of embankment especially in the up to part of the structure was obvious. It is required to consider an improvement of dynamic settlement with reinforcement structure in the future. 1. Introduction Design control of dynamic settlement in embankment is essential because there are good samples that were ruined during an earthquake. Therefore, it seems to be a specific attention to investigate and best research the influence of the dynamic load settlement of embankment during the earthquake. From the literature, review indicated that since the beginning of 1920s and up to 1960s “pseudo-static method” of analysis was well known. However, this method was very simple, and it does not take into account the nature of the slope-forming material or the foundation material. In the year 1965, based on deformation characteristics, Newmark [2] proposed “sliding block method”. Among other methods, “shear beam model” analysis was quite popular. This method was introduced by Mononobe [3]. Gazetas [4] proposed an improved “inhomogeneous shear beam model” which can take care of the fact that the shear modulus in earth or rock-fill dams is not constant but increases with 2/3 power of depth from the crest. Clough and Chopra [5] introduced the finite-element method for two-dimensional plane-strain analysis to estimate of the dynamic response of an embankment assuming that it consists of linearly elastic, homogeneous, isotropic materials. Later on, several other researchers developed the finite-element and finite difference method for nonlinear, inelastic, nonhomogeneous, anisotropic behavior of materials under seismic conditions. Zeghal and Abdel-Ghafar [6] proposed a local-global finite element method of analysis for determination of the nonlinear seismic

References

[1]  M. Wieland, “Analysis aspects of dams subjected to strong ground shaking,” 2008, http://www.waterpowermagazine.com.
[2]  N. M. Newmark, “Effects of earthquakes on dams and embankments,” Geotechnique, 15: 139–160, 1965, http://www.civil.ubc.ca/liquefaction/Publications/Hydropower&Dams.pdf.
[3]  H. A. Mononobe, “Seismic stability of the earth dam,” in Proceeding of the 2nd Congress on Large Dams (CLD ’36), pp. 435–442, Washington, DC, USA, 1936.
[4]  G. Gazetas, “New dynamic model for earth dams evaluated through case histories,” Soils and Foundations, vol. 21, no. 1, pp. 67–78, 1981.
[5]  R. W. Clough and A. K. Chopra, “Earthquake stress analysis in earth dams,” Journal of Engineering Mechanics, vol. 92, pp. 197–211, 1966.
[6]  M. Zeghal and A. M. Abdel-Ghafar, “Local global finite element analysis of the response of earth dams,” Computers & Structures, vol. 42, pp. 569–579, 1992.
[7]  H. Y. Ming and X. S. Li, “Fully coupled analysis of failure and remediation of Lower San Fernando Dam,” Journal of Geotechnical and Geoenvironmental Engineering, vol. 129, no. 4, pp. 336–349, 2003.
[8]  M. Hudson, I. M. Idriss, and M. Beikae, “User’s manual for QUAD4M. Center for Geotechnical Modeling, Department of Civil and Environmental Engineering, University of California, Davis, Calif, USA,” 1994, http://cgm.engineering.ucdavis.edu/Publications/reports/Quad4Mmanualrev2003.pdf.
[9]  ITASCA, “Fast Lagrangian analysis of continua. Version 4, User’s Guide, ITASCA Consulting Group, Minneapolis, Minnesota, USA,” 2000, http://www.aimil.com/flac3d.aspx.
[10]  G. A. Ordó?ez, “SHAKE2000: A computer program for the 1D analysis of geotechnical earthquake engineering problems,” 2000, http://www.shake2000.com/index.htm.
[11]  TAGA soft Limited, “TELDYN-Users’manual. Lafayette, California,” 1998, http://www.tagasoft.com.
[12]  M. Seid-Karbasi and P. M. Byrne, “Embankment dams and earthquakes,” International Journal on Hydropower and Dams, vol. 11, no. 2, pp. 96–102, 2004.
[13]  R. Piao, A. H. Rippe, B. Myers, and K. W. Lane, “Earth dam liquefaction and deformation analysis using numerical modeling,” in Proceeding of the Geo Congress (GC ’06), pp. 1–6, American Society of Civil Engineers, 2006.
[14]  R. Piao, A. H. Rippe, B. Myers, and K. W. Lane, “Earth dam liquefaction and deformation analysis using numerical modeling,” American Journal of Engineering and Applied Sciences, vol. 2, no. 3, pp. 559–564, 2009.
[15]  Y. Zhu, K. Lee, and G. H. Collison, “A 2D seismic stability and deformation analysis. Proceeding of the Geo-Frontiers, Jan. 24–26, ASCE., Austin, Texas, pp: 1–15,” 2005, http://www.golder.com/archive/2005Geo_PTFI.pdf.
[16]  R. B. J. Brinkgreve, R. Al-Khoury, K. J. Bakker, P. G. Bonnier, P. J. W. Brand, et al., PLAXIS 2D-Version 8 Full Manual, Amsterdam, The Netherlands, 2002.
[17]  P. Mestat, “Lois des comportement des geomateriaux et modelisation par la methode des elements finis,” in Etudes et Recherches des Laboratories des Ponts et Chaussees, Serie Geotechnique:GT52, 1993.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133