全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Properties of Concrete at Elevated Temperatures

DOI: 10.1155/2014/468510

Full-Text   Cite this paper   Add to My Lib

Abstract:

Fire response of concrete structural members is dependent on the thermal, mechanical, and deformation properties of concrete. These properties vary significantly with temperature and also depend on the composition and characteristics of concrete batch mix as well as heating rate and other environmental conditions. In this chapter, the key characteristics of concrete are outlined. The various properties that influence fire resistance performance, together with the role of these properties on fire resistance, are discussed. The variation of thermal, mechanical, deformation, and spalling properties with temperature for different types of concrete are presented. 1. Introduction Concrete is widely used as a primary structural material in construction due to numerous advantages, such as strength, durability, ease of fabrication, and noncombustibility properties, it possesses over other construction materials. Concrete structural members when used in buildings have to satisfy appropriate fire safety requirements specified in building codes [1–4]. This is because fire represents one of the most severe environmental conditions to which structures may be subjected; therefore, provision of appropriate fire safety measures for structural members is an important aspect of building design. Fire safety measures to structural members are measured in terms of fire resistance which is the duration during which a structural member exhibits resistance with respect to structural integrity, stability, and temperature transmission [5, 6]. Concrete generally provides the best fire resistance properties of any building material [7]. This excellent fire resistance is due to concrete’s constituent materials (i.e., cement and aggregates) which, when chemically combined, form a material that is essentially inert and has low thermal conductivity, high heat capacity, and slower strength degradation with temperature. It is this slow rate of heat transfer and strength loss that enables concrete to act as an effective fire shield not only between adjacent spaces but also to protect itself from fire damage. The behaviour of a concrete structural member exposed to fire is dependent, in part, on thermal, mechanical, and deformation properties of concrete of which the member is composed. Similar to other materials the thermophysical, mechanical, and deformation properties of concrete change substantially within the temperature range associated with building fires. These properties vary as a function of temperature and depend on the composition and characteristics of concrete. The strength

References

[1]  ACI 216.1, “Code requirements for determining fire resistance of concrete and masonry construction assemblies,” ACI 216.1-07/TMS-0216-07, American Concrete Institute, Farmington Hills, Mich, USA, 2007.
[2]  ACI-318, Building Code Requirements For ReinForced Concrete and Commentary, American Concrete Institute,, Farmington Hills, Mich, USA, 2008.
[3]  “EN 1991-1-2: actions on structures. Part 1-2: general actions—actions on structures exposed to fire,” Eurocode 1, European Committee for Standardization, Brussels, Belgium, 2002.
[4]  “EN, 1992-1-2: design of concrete structures. Part 1-2: general rules—structural fire design,” Eurocode 2, European Committee for Standardization, Brussels, Belgium, 2004.
[5]  A. H. Buchanan, Structural Design For Fire Safety, John Wiley and Sons, Chichester, UK, 2002.
[6]  J. A. Purkiss, Fire Safety Engineering Design of Structures, Butterworth-Heinemann, Elsevier, Oxoford, UK, 2007.
[7]  V. R. Kodur and N. Raut, “Performance of concrete structures under fire hazard: emerging trends,” The Indian Concrete Journal, vol. 84, no. 2, pp. 23–31, 2010.
[8]  “Standard test methods for fire tests of building construction and materials,” ASTM E119-08b, ASTM International, West Conshohocken, Pa, USA, 2008.
[9]  “Fire design of concrete structures—materials, structures and modelling,” FIB Bulletin 38, The International Federation for Structural Concrete, Lausanne, Switzerland, 2007.
[10]  V. K. R. Kodur, T. C. Wang, and F. P. Cheng, “Predicting the fire resistance behaviour of high strength concrete columns,” Cement and Concrete Composites, vol. 26, no. 2, pp. 141–153, 2004.
[11]  V. Kodur, M. Dwaikat, and N. Raut, “Macroscopic FE model for tracing the fire response of reinforced concrete structures,” Engineering Structures, vol. 31, no. 10, pp. 2368–2379, 2009.
[12]  V. R. Kodur and T. Z. Harmathy, “Properties of building materials,” in SFPE Handbook of Fire Protection Engineering, P. J. DiNenno, Ed., National Fire Protection Association, Quincy, Mass, USA, 2008.
[13]  M. B. Dwaikat and V. K. R. Kodur, “Fire induced spalling in high strength concrete beams,” Fire Technology, vol. 46, no. 1, pp. 251–274, 2010.
[14]  “Standard test method for evaluating the resistance to thermal transmission of materials by the guarded heat flow meter technique,” ASTM E1530, ASTM International, West Conshohocken, Pa, USA, 2011.
[15]  ASCE, Structural Fire Protection, ASCE Committee on Fire Protection, Structural Division, American Society of Civil Engineers, New York, NY, USA, 1992.
[16]  K.-Y. Shin, S.-B. Kim, J.-H. Kim, M. Chung, and P.-S. Jung, “Thermo-physical properties and transient heat transfer of concrete at elevated temperatures,” Nuclear Engineering and Design, vol. 212, no. 1–3, pp. 233–241, 2002.
[17]  B. Adl-Zarrabi, L. Bostr?m, and U. Wickstr?m, “Using the TPS method for determining the thermal properties of concrete and wood at elevated temperature,” Fire and Materials, vol. 30, no. 5, pp. 359–369, 2006.
[18]  Z. P. Ba?ant and M. F. Kaplan, Concrete at High Temperatures: Material Properties and Mathematical Models, Longman Group Limited, Essex, UK, 1996.
[19]  L. T. Phan, “Fire performance of high-strength concrete: a report of the state-of-the-art,” Tech. Rep., National Institute of Standards and Technology, Gaithersburg, Md, USA, 1996.
[20]  T. Z. Harmathy and L. W. Allen, “Thermal properties of selected masonry unit concretes,” Journal American Concrete Institution, vol. 70, no. 2, pp. 132–142, 1973.
[21]  V. R. Kodur and M. A. Sultan, “Thermal propeties of high strength concrete at elevated temperatures,” American Concrete Institute, Special Publication, SP-179, pp. 467–480, 1998.
[22]  “Standard test method for determining specific heat capacity by differential scanning calorimetry,” ASTM C1269, ASTM International, West Conshohocken, Pa, USA, 2011.
[23]  ISO/DIS22007-2:2008, “Determination of thermal conductivity and thermal diffusivity, Part 2: transient plane heat source (hot disc) method,” ISO, Geneva, Switzerland, 2008.
[24]  T. Z. Harmathy, “Thermal properties of concrete at elevated temperatures,” ASTM Journal of Materials, vol. 5, no. 1, pp. 47–74, 1970.
[25]  P. K. Mehta and P. J. M. Monteiro, Concrete: Microstructure, Properties, and Materials, McGraw-Hill, New York, NY, USA, 2006.
[26]  S. Mindess, J. F. Young, and D. Darwin, Concrete, Pearson Education, Upper Saddle River, NJ, USA, 2003.
[27]  W. Khaliq and V. Kodur, “High temperature mechanical properties of high strength fly ash concrete with and without fibers,” ACI Materials Journal, vol. 109, no. 6, pp. 665–674, 2012.
[28]  A. M. Neville, Properties of Concrete, Pearson Education, Essex, UK, 2004.
[29]  S. P. Shah, “Do fibers increase the tensile strength of cement-based matrixes?” ACI Materials Journal, vol. 88, no. 6, pp. 595–602, 1991.
[30]  Z. P. Bazant and J.-C. Chern, “Stress-induced thermal and shrinkage strains in concrete,” Journal of Engineering Mechanics, vol. 113, no. 10, pp. 1493–1511, 1987.
[31]  T. Z. Harmathy, “A comprehensive creep model,” Journal of Basic Engineering, vol. 89, no. 3, pp. 496–502, 1967.
[32]  F. H. Wittmann, Ed., Fundamental Research on Creep and Shrinkage of Concrete, Martinus Nijhoff, The Hague, Netherlands, 1982.
[33]  M. B. Dwaikat and V. K. R. Kodur, “Hydrothermal model for predicting fire-induced spalling in concrete structural systems,” Fire Safety Journal, vol. 44, no. 3, pp. 425–434, 2009.
[34]  V. K. R. Kodur and L. Phan, “Critical factors governing the fire performance of high strength concrete systems,” Fire Safety Journal, vol. 42, no. 6-7, pp. 482–488, 2007.
[35]  X. Yu, X. Zha, and Z. Huang, “The influence of spalling on the fire resistance of RC structures,” Advanced Materials Research, vol. 255–260, pp. 519–523, 2011.
[36]  V. K. R. Kodur and M. Dwaikat, “Effect of fire induced spalling on the response of reinforced concrete beams,” International Journal of Concrete Structures and Materials, vol. 2, no. 2, pp. 71–82, 2008.
[37]  T. Z. Harmathy, “Moisture and heat transport with particular reference to concrete,” NRCC 12143, National Council of Canada, 1971.
[38]  T. Z. Harmathy, Fire Safety Design and Concrete, John Wiley & Sons, New York, NY, USA, 1993.
[39]  G. A. Khoury, “Concrete spalling assessment methodologies and polypropylene fibre toxicity analysis in tunnel fires,” Structural Concrete, vol. 9, no. 1, pp. 11–18, 2008.
[40]  P. Kalifa, G. Chéné, and C. Gallé, “High-temperature behaviour of HPC with polypropylene fibres—from spalling to microstructure,” Cement and Concrete Research, vol. 31, no. 10, pp. 1487–1499, 2001.
[41]  V. K. R. Kodur and M. A. Sultan, “Effect of temperature on thermal properties of high-strength concrete,” Journal of Materials in Civil Engineering, vol. 15, no. 2, pp. 101–107, 2003.
[42]  M. G. Van Geem, J. Gajda, and K. Dombrowski, “Thermal properties of commercially available high-strength concretes,” Cement, Concrete and Aggregates, vol. 19, no. 1, pp. 38–54, 1997.
[43]  T. T. Lie and V. R. Kodur, “Thermal properties of fibre-reinforced concrete at elevated temperatures,” IR 683, IRC, National Research Council of Canada, Ottawa, Canada, 1995.
[44]  T. T. Lie and V. K. R. Kodur, “Thermal and mechanical properties of steel-fibre-reinforced concrete at elevated temperatures,” Canadian Journal of Civil Engineering, vol. 23, no. 2, pp. 511–517, 1996.
[45]  W. Khaliq, Performance characterization of high performance concretes under fire conditions [Ph.D. thesis], Michigan State University, 2012.
[46]  V. K. R. Kodur, M. M. S. Dwaikat, and M. B. Dwaikat, “High-temperature properties of concrete for fire resistance modeling of structures,” ACI Materials Journal, vol. 105, no. 5, pp. 517–527, 2008.
[47]  D. R. Flynn, “Response of high performance concrete to fire conditions: review of thermal property data and measurement techniques,” Tech. Rep., National Institute of Standards and Technology, Millwood, Va, USA, 1999.
[48]  T. Harada, J. Takeda, S. Yamane, and F. Furumura, “Strength, elasticity and thermal properties of concrete subjected to elevated temperatures,” ACI Concrete For Nuclear Reactor SP, vol. 34, no. 2, pp. 377–406, 1972.
[49]  V. Kodur and W. Khaliq, “Effect of temperature on thermal properties of different types of high-strength concrete,” Journal of Materials in Civil Engineering, ASCE, vol. 23, no. 6, pp. 793–801, 2011.
[50]  W. C. Tang and T. Y. Lo, “Mechanical and fracture properties of normal-and high-strength concretes with fly ash after exposure to high temperatures,” Magazine of Concrete Research, vol. 61, no. 5, pp. 323–330, 2009.
[51]  A. Noumowe, “Mechanical properties and microstructure of high strength concrete containing polypropylene fibres exposed to temperatures up to 200°C,” Cement and Concrete Research, vol. 35, no. 11, pp. 2192–2198, 2005.
[52]  M. Li, C. Qian, and W. Sun, “Mechanical properties of high-strength concrete after fire,” Cement and Concrete Research, vol. 34, no. 6, pp. 1001–1005, 2004.
[53]  RILEM TC 129-MHT, “Test methods for mechanical properties of concrete at high temperatures—compressive strength for service and accident conditions,” Materials and Structures, vol. 28, no. 3, pp. 410–414, 1995.
[54]  RILEM TC 129-MHT, “Test methods for mechanical properties of concrete at high temperatures, Part 4—tensile strength for service and accident conditions,” Materials and Structures, vol. 33, pp. 219–223, 2000.
[55]  Y. N. Chan, G. F. Peng, and M. Anson, “Residual strength and pore structure of high-strength concrete and normal strength concrete after exposure to high temperatures,” Cement and Concrete Composites, vol. 21, no. 1, pp. 23–27, 1999.
[56]  C.-S. Poon, S. Azhar, M. Anson, and Y.-L. Wong, “Comparison of the strength and durability performance of normal- and high-strength pozzolanic concretes at elevated temperatures,” Cement and Concrete Research, vol. 31, no. 9, pp. 1291–1300, 2001.
[57]  B. Chen and J. Liu, “Residual strength of hybrid-fiber-reinforced high-strength concrete after exposure to high temperatures,” Cement and Concrete Research, vol. 34, no. 6, pp. 1065–1069, 2004.
[58]  A. Lau and M. Anson, “Effect of high temperatures on high performance steel fibre reinforced concrete,” Cement and Concrete Research, vol. 36, no. 9, pp. 1698–1707, 2006.
[59]  W. P. S. Dias, G. A. Khoury, and P. J. E. Sullivan, “Mechanical properties of hardened cement paste exposed to temperatures up to 700°C,” ACI Materials Journal, vol. 87, no. 2, pp. 160–166, 1990.
[60]  F. Furumura, T. Abe, and Y. Shinohara, “Mechanical properties of high strength concrete at high temperatures,” in Proceedings of the 4th Weimar Workshop on High Performance Concrete, Material Properties and Design, pp. 237–254, 1995.
[61]  R. Felicetti and P. G. Gambarova, “Effects of high temperature on the residual compressive strength of high-strength siliceous concretes,” ACI Materials Journal, vol. 95, no. 4, pp. 395–406, 1998.
[62]  K. K. Sideris, “Mechanical characteristics of self-consolidating concretes exposed to elevated temperatures,” Journal of Materials in Civil Engineering, vol. 19, no. 8, pp. 648–654, 2007.
[63]  H. Fares, S. Remond, A. Noumowe, and A. Cousture, “High temperature behaviour of self-consolidating concrete. Microstructure and physicochemical properties,” Cement and Concrete Research, vol. 40, no. 3, pp. 488–496, 2010.
[64]  A. Behnood and M. Ghandehari, “Comparison of compressive and splitting tensile strength of high-strength concrete with and without polypropylene fibers heated to high temperatures,” Fire Safety Journal, vol. 44, no. 8, pp. 1015–1022, 2009.
[65]  G. G. Carette, K. E. Painter, and V. M. Malhotra, “Sustained high temperature effect on concretes made with normal portland cement, normal portland cement and slag, or normal portland cement and fly ash,” Concrete International, vol. 4, no. 7, pp. 41–51, 1982.
[66]  R. Felicetti, P. G. Gambarova, G. P. Rosati, F. Corsi, and G. Giannuzzi, “Residual mechanical properties of high-strength concretes subjected to high-temperature cycles,” in Proceedings of the International Symposium of Utilization of High-Strength/High-Performance Concrete, pp. 579–588, Paris, France, 1996.
[67]  J. A. Purkiss, “Steel fibre reinforced concrete at elevated temperatures,” International Journal of Cement Composites and Lightweight Concrete, vol. 6, no. 3, pp. 179–184, 1984.
[68]  P. Rossi, “Steel fiber reinforced concretes (SFRC): an example of French research,” ACI Materials Journal, vol. 91, no. 3, pp. 273–279, 1994.
[69]  V. R. Kodur, “Fibre-reinforced concrete for enhancing structural fire resistance of columns,” Fibre-Structural Applications of Fibre-Reinforced Concrete, ACI SP-182, pp. 215–234, 1999.
[70]  C. R. Cruz, “Elastic properties of concrete at high temperatures,” Journat of the PCA Research and Development Laboratories, vol. 8, pp. 37–45, 1966.
[71]  I. D. Bennetts, Tech. Rep. MRL/PS23/81/001, BHP Melbourne Research Laboratories, Clayton, Australia, 1981.
[72]  C. Castillo and A. J. Durrani, “Effect of transient high temperture on high-strength concrete,” ACI Materials Journal, vol. 87, no. 1, pp. 47–53, 1990.
[73]  F. P. Cheng, V. K. R. Kodur, and T. C. Wang, “Stress-strain curves for high strength concrete at elevated temperatures,” Tech. Rep. NRCC-46973, National Research Council of Canada, 2004.
[74]  Y. F. Fu, Y. L. Wong, C. S. Poon, and C. A. Tang, “Stress-strain behaviour of high-strength concrete at elevated temperatures,” Magazine of Concrete Research, vol. 57, no. 9, pp. 535–544, 2005.
[75]  U. Schneider, “Concrete at high temperatures—a general review,” Fire Safety Journal, vol. 13, no. 1, pp. 55–68, 1988.
[76]  N. Raut, Response of high strength concrete columns under fire-induced biaxial bending [Ph.D. thesis], Michigan State University, East Lansing, Mich, USA, 2011.
[77]  Y.-F. Fu, Y.-L. Wong, C.-S. Poon, C.-A. Tang, and P. Lin, “Experimental study of micro/macro crack development and stress-strain relations of cement-based composite materials at elevated temperatures,” Cement and Concrete Research, vol. 34, no. 5, pp. 789–797, 2004.
[78]  G. A. Khoury, B. N. Grainger, and P. J. E. Sullivan, “Strain of concrete during fire heating to 600°C,” Magazine of Concrete Research, vol. 37, no. 133, pp. 195–215, 1985.
[79]  J. C. Mare?chal, ACI SP 34, American Concrete Institute, Detroit, Mich, USA, 1972.
[80]  H. Gross, “High-temperature creep of concrete,” Nuclear Engineering and Design, vol. 32, no. 1, pp. 129–147, 1975.
[81]  U. Schneider, U. Diedrichs, W. Rosenberger, and R. Weiss, Sonderforschungsbereich 148, Arbeitsbericht 1978–1980, Teil II, B 3, Technical University of Braunschweig, Germany, 1980.
[82]  Y. Anderberg and S. Thelandersson, “Stress and deformation characteristics of concrete at high temperatures, 2-Experimental investigation and material behaviour model,” Bulletin 54, Lund Institute of Technology, Lund, Sweden, 1976.
[83]  V. K. R. Kodur, “Spalling in high strength concrete exposed to fire—concerns, causes, critical parameters and cures,” in Proceedings of the ASCE Structures Congress: Advanced Technology in Structural Engineering, pp. 1–9, May 2000.
[84]  U. Diederichs, U. Jumppanen, and U. Schneider, “High temperature properties and spalling behaviour of high strength concrete,” in Proceedings of the 4th Weimar Workshop on High Performance Concrete, HAB, Weimar, Germany, 1995.
[85]  K. D. Hertz, “Limits of spalling of fire-exposed concrete,” Fire Safety Journal, vol. 38, no. 2, pp. 103–116, 2003.
[86]  Y. Anderberg, “Spalling phenomenon of HPC and OC,” in Proceedings of the International Workshop on Fire Performance of High Strength Concrete, NIST SP 919, NIST, Gaithersburg, Md, USA, 1997.
[87]  Z. P. Ba?ant, “Analysis of pore pressure, thermal stress and fracture in rapidly heated concrete,” in Proceedings of the International Workshop on Fire Performance of High Strength Concrete, NIST SP 919, pp. 155–164, Gaithersburg, Md, USA, 1997.
[88]  A. N. Noumowe, R. Siddique, and G. Debicki, “Permeability of high-performance concrete subjected to elevated temperature (600°C),” Construction and Building Materials, vol. 23, no. 5, pp. 1855–1861, 2009.
[89]  V. Boel, K. Audenaert, and G. De Schutter, “Gas permeability and capillary porosity of self-compacting concrete,” Materials and Structures/Materiaux et Constructions, vol. 41, no. 7, pp. 1283–1290, 2008.
[90]  U. Danielsen, “Marine concrete structures exposed to hydrocarbon fires,” Tech. Rep., SINTEF-The Norwegian Fire Research Institute, Trondheim, Norway, 1997.
[91]  V. R. Kodur and M. A. Sultan, “Structural behaviour of high strength concrete columns exposed to fire,” in Proceedings of the International Symposium on High Performance and Reactive Powder Concrete, pp. 217–232, 1998.
[92]  V. Kodur and R. McGrath, “Fire endurance of high strength concrete columns,” Fire Technology, vol. 39, no. 1, pp. 73–87, 2003.
[93]  V. K. R. Kodur, F.-P. Cheng, T.-C. Wang, and M. A. Sultan, “Effect of strength and fiber reinforcement on fire resistance of high-strength concrete columns,” Journal of Structural Engineering, vol. 129, no. 2, pp. 253–259, 2003.
[94]  L. T. Phan, “Spalling and mechanical properties of high strength concrete at high temperature,” in Proceedings of the 5th International Conference on Concrete under Severe Conditions: Environment & Loading (CONSEC '07), CONSEC Committee, Tours, France, 2007.
[95]  A. Noumowé, P. Clastres, G. Debicki, and J. Costaz, “Thermal stresses and water vapor pressure of high performance concrete at high temperature,” in Proceedings of the 4th International Symposium on Utilization of High-Strength/High-Performance Concrete, Paris, France, 1996.
[96]  V. K. R. Kodur, “Fiber reinforcement for minimizing spalling in High Strength Concrete structural members exposed to fire,” ACI, Special Publication, Innovations in Fibre-ReinForced Concrete For Value, 216-14, pp. 221–236, 2003.
[97]  V. K. R. Kodur, “Design solutions for enhancing the fire resistance of high strength concrete columns,” Indian Concrete Journal, vol. 81, no. 10, pp. 9–20, 2007.
[98]  V. Kodur, Fire Resistance Design Guidelines for High Strength Concrete Columns, National Research Council, Ontario, Canada, 2003.
[99]  A. Bilodeau, V. M. Malhotra, and G. C. Hoff, “Hydrocarbon fire resistance of high strength normal weight and light weight concrete incorporating polypropylene fibres,” in Proceedings of the International Symposium on High Performance and Reactive Powder Concrete, Sherbrooke, Canada, 1998.
[100]  A. Bilodeau, V. K. R. Kodur, and G. C. Hoff, “Optimization of the type and amount of polypropylene fibres for preventing the spalling of lightweight concrete subjected to hydrocarbon fire,” Cement and Concrete Composites, vol. 26, no. 2, pp. 163–174, 2004.
[101]  D. P. Bentz, “Fibers, percolation, and spelling of high-performance concrete,” ACI Structural Journal, vol. 97, no. 3, pp. 351–359, 2000.
[102]  V. K. R. Kodur and R. McGrath, “Effect of silica fume and lateral confinement on fire endurance of high strength concrete columns,” Canadian Journal of Civil Engineering, vol. 33, no. 1, pp. 93–102, 2006.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133