全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Flexible Pavement Performance in relation to In Situ Mechanistic and Volumetric Properties Using LTPP Data

DOI: 10.1155/2013/972020

Full-Text   Cite this paper   Add to My Lib

Abstract:

This research study focuses on the actual performance of the flexible pavements and its relationship with the in-situ mechanistic and volumetric properties. The data required for the study were obtained using the Long Term Pavement Performance database. Approximately, 116 flexible pavement sections throughout United States were analyzed and discussed. The results indicated that the temperature has a significant affect on the backcalculated modulus of the hot mix asphalt layer. However, no strong relationship was observed between the hot mix asphalt backcalculated modulus and in situ air voids. It was found that fatigue life was a function of tensile strain at the bottom of hot mix asphalt layer, peak surface deflection, hot mix asphalt air voids and maximum specific gravity, and ambient air temperature. Similar relationships between the rut life, mechanistic and volumetric properties were established for wet-freeze and wet-no-freeze climatic zones. The sensitivity analysis revealed that the rut performance in wet-no-freeze sections is mainly affected by higher base and roadbed compressive stresses and strains. On the other hand, the performances in wet-freeze sections are highly depended on roadbed compressive strain and modulus ratio of subbase to roadbed. 1. Introduction This study focuses on the actual performance of the flexible pavements and its relationship with the in situ, mechanistic and volumetric properties. In general, pavements are subjected to various kinds of loading and different environmental conditions, over time that manifest various distresses and affects the pavement performance. These distresses include rutting, fatigue cracking, temperature cracking, transverse cracking, and age-related block cracking [1]. Under a set of loading and environmental conditions the performance of the flexible pavements is function of properties of asphalt concrete mixture, volumetric properties (air voids, volume in mineral aggregate (VMA), specific gravity, and asphalt content) and mechanistic properties of HMA mixture, and underlying base and subbase and roadbed materials [2]. The temperature also has detrimental effects on the performance of the pavement; if the temperature is too high it causes rutting and low temperature will cause thermal cracking. By providing appropriate VMA, it is believed that rutting may be minimized, and mixture durability can be enhanced [3]. It is found that tender mixtures compacted to lower air void content (AV) will undergo less permanent deformation than if they are compacted to higher AV content. Lateral distortion

References

[1]  Y. H. Huang, Pavement Analysis and Design, Prentice Hall, Upper Saddle River, NJ, USA, 2nd edition, 2004.
[2]  A. L. Simpson, “Measure of rut,” Annual Meeting CD-Rom, Paper Revised from Original Submittal. TRB, 2003.
[3]  P. S. Kandhal and R. B. Mallick, Effect of Mix Gradation on Rutting Potential of Dense-Graded Asphalt Mixtures, Transportation Research Record No. 1767, TRB, National Research Council, Washington, DC, USA, 2001.
[4]  H. V. Quintis and T. W. Kennedy, “AAMAS mixture properties related to pavement Performance,” Journal of Association of Asphalt Pavement Technologist, vol. 58, p. 553, 1989.
[5]  Ammerican Association of State and Highway Officials (AASHTO), AASHTO Guide for Design of Pavements Structures, Washington, DC, USA, 1986.
[6]  G. R. Rada, C. A. Ritcher, and P. J. Stephanos, Layer Moduli from Deflection Measurements: Software Selections and Development of SHRP's Procedure Flexible Pavements, Beltsvile, Md, USA, 1991.
[7]  Asphalt Institute (AI), Research and Developed of The Asphalt Institute's Thickness Design Manual (MS-1), Research Report No. 82-2, The Asphalt Institute, College Park, Md, USA, 9th edition, 1982.
[8]  Asphalt Institute (AI), Mix Design Methods for Asphalt Concrete, Manual Series No.2, 6th edition, 1989.
[9]  M. J. Khattak and G. Y. Baladi, Fatigue and Permanent Deformation Models for Polymer-Modified Asphalt Mixtures, Transportation Research Record No. 1767, TRB, 2001.
[10]  C. A. V. Queiroz and W. Ronald Hudson, “Improved pavement performance relationships in Brazil,” in Proceedings of the 5th International Conference on the Structural Design of Asphalt Pavements, vol. 1, The University of Michigan, Ann Arbor, Mich, USA, 1982.
[11]  W. D. O. Paterson, Road Deterioration and Maintenance Effects—Models for Planning and Management, vol. 53 of Highway Design and Maintenance Standards Series, The Johns Hopkins University Press, Baltimore, Md, USA, 1987.
[12]  J. B. Rauhut and T. W. Kennedy, Characterizing Fatigue Life of Asphalt Concrete Pavements, Transportation Research Record No. 888, TRB, National Research Council, Washington, DC, USA, 1982.
[13]  B. J. Rauhut, R. L. Lytton, P. R. Jordahl, et al., Damage Functions for Rutting, Fatigue Cracking, and Loss of Serviceability in Flexible Pavements, Transportation Research Record No. 943, TRB, National Research Council, Washington, DC, USA, 1983.
[14]  R. L. Lytton, C. H. Michalak, and T. Scullion, “The texas flexible pavement design system,” in Proceedings of the 5th International Conference on the Structural Design of Asphalt Pavements, vol. 1, The University of Michigan, Ann Arbor, Mich, USA, 1982.
[15]  ARA, ERES Division. Guide for Mechanistic-Empirical Design of New and Rehabilitated Pavement Structures Chapter 4. Design of New and Reconstructed Rigid Pavements. Champaign, Ill, USA, National Cooperative Highway Research Program, 2001.
[16]  K. P. George, “MDOT pavement management system: prediction models and feedback system,” Jackson, MS 39215-1850, Mississippi Department of Transportation, 2000.
[17]  Long-Term Pavement Performance (LTPP) Data Analysis Support: National Pooled Fund Study Tpf-5(013), FHWA, 2006, http://www.fhwa.dot.gov/publications/research/infrastructure/pavements/ltpp/06121/appendb.cfm.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133