全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

A Robust and Accurate Quasi-Monte Carlo Algorithm for Estimating Eigenvalue of Homogeneous Integral Equations

DOI: 10.1155/2013/891029

Full-Text   Cite this paper   Add to My Lib

Abstract:

We present an efficient numerical algorithm for computing the eigenvalue of the linear homogeneous integral equations. The proposed algorithm is based on antithetic Monte Carlo algorithm and a low-discrepancy sequence, namely, Faure sequence. To reduce the computational time we reduce the variance by using the antithetic variance reduction procedure. Numerical results show that our scheme is robust and accurate. 1. Introduction In Monte Carlo (MC) methods the random variables are simulated by computer generated pseudorandom sequences, and the numerical solution is performed by averaging over a large number of simulations. Pseudorandom numbers mimic the realizations of independent identically distributed random variables. Due to a fundamental result in probability theory, Monte Carlo methods based on such pseudorandom numbers can converge only proportionally to the square root of the number of simulations. It was noticed that the randomness of the simulating sequence is not essential for numerical integration. Deterministic sequences which fill the space uniformly can also be used. One of the most powerful methods for improving Monte Carlo simulation is to use low-discrepancy numbers [1]. Therefore, instead of using random numbers, we can employ a deterministic sequence of numbers. Such a sequence is called a low-discrepancy sequence. The great advantage of low-discrepancy sequences is that their rate of convergence is rather than , which greatly increases the competitiveness of Monte Carlo simulations. Using low-discrepancy sequences to carry out Monte Carlo algorithm is sometimes called quasi-Monte Carlo (QMC) algorithm [1]. The Faure sequence is one of the well-known quasirandom sequences used in quasi-Monte Carlo applications. In [2, 3] details of Faure sequence and its various scrambling methods are described. The problem of using Monte Carlo and quasi-Monte Carlo methods for finding an eigenpair of matrices has been extensively studied [4]. In [5] a numerical method for finding the eigenvalue of the linear homogenous integral equation is proposed by applying antithetic Monte Carlo method to obtain a reliable scheme. In this paper we present a new numerical method based on antithetic variance reduction method and quasi-Monte Carlo algorithm on scrambled Faure sequence for estimating the eigenvalue of the following linear homogenous integral equation: It can be written in the form of If , then and are called the eigenvalue and eigenfunction of the above equations, respectively. Also, is called the kernel of this integral equation. Throughout this

References

[1]  I. T. Dimov and T. V. Gurov, “Monte Carlo algorithm for solving integral equations with polynomial nonlinearity: parallel implementation,” Pliska Studia Mathematica Bulgarica, vol. 13, pp. 117–132, 2000.
[2]  B. Fathi and E. Radmoghaddam, “Optimal Faure sequence via mix Faure with the best scrambling schemes,” Computer Science and Its Applications, vol. 2, no. 1, pp. 2166–2924, 2012.
[3]  B. Vandewoestyne, H. Chi, and R. Cools, “Computational investigations of scrambled faure sequences,” Mathematics and Computers in Simulation, vol. 81, no. 3, pp. 522–535, 2010.
[4]  B. Fathi and F. Mehrdoust, “Quasi Monte Carlo algorithm for computing smallest and largest generalized eigenvalues,” ANZIAM Journal E, vol. 52, pp. 41–58, 2011.
[5]  F. Mehrdoust and B. Fathi, “A reliable stochastic algorithm for estimating eigenvalue of homogeneous integral equations,” Journal of Advanced Research in Applied Mathematics, vol. 5, no. 2, p. 13, 2013.
[6]  H. Faure, “Discrepancy of sequences associated with a number system (in dimension s),” Acta Arithmetica, vol. 41, no. 4, pp. 337–351, 1982 (French).
[7]  H. Niederreiter, Random Number Generations and Quasi-Monte Carlo Methods, Society for Industrial and Applied Mathematics, Philadelphia, Pa, USA, 1992.
[8]  J. Spanier and E. H. Maize, “Quasi-random methods for estimating integrals using relatively small samples,” SIAM Review, vol. 36, no. 1, pp. 18–44, 1994.
[9]  F. J. Hickernell, “Mean square discrepancy of randomized nets,” ACM Transactions on Modeling and Computer Simulation, vol. 6, pp. 274–296, 1996.
[10]  I. M. Sobol, “Uniformly distributed sequences with an additional uniform property,” USSR Computational Mathematics and Mathematical Physics, vol. 16, no. 5, pp. 236–242, 1976.
[11]  S. Tezuka, “Polynomial arithmetic analogue of halton sequences,” ACM Transactions on Modeling and Computer Simulation, vol. 3, no. 2, pp. 99–107, 1993.
[12]  M. S. Joshi, The Concepts and Practice of Mathematical Finance, Cambridge University Press, 2nd edition, 2003.
[13]  H. Chi, Scrambled Quasi-Random Sequences and their Application, The Florida state university college of arts and science, 2004.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133