全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Insulin Resistance and Muscle Metabolism in Chronic Kidney Disease

DOI: 10.1155/2013/329606

Full-Text   Cite this paper   Add to My Lib

Abstract:

Insulin resistance is a common finding in chronic kidney disease (CKD) and is manifested by mild fasting hyperglycemia and abnormal glucose tolerance testing. Circulating levels of glucocorticoids are high. In muscle, changes in the insulin signaling pathway occur. An increase in the regulatory p85 subunit of Class I phosphatidylinositol 3-Kinase enzyme leads to decreased activation of the downstream effector protein kinase B (Akt). Mechanisms promoting muscle proteolysis and atrophy are unleashed. The link of Akt to the ubiquitin proteasome pathway, a major degradation pathway in muscle, is discussed. Another factor associated with insulin resistance in CKD is angiotensin II (Ang II) which appears to induce its intracellular effects through inflammatory cytokines or reactive oxygen species. Skeletal muscle ATP is depleted and the ability of AMP-activated protein kinase (AMPK) to replenish energy stores is blocked. How this can be reversed is discussed. Interleukin-6 (IL-6) levels are elevated in CKD and impair insulin signaling at the level of IRS-1. With exercise, IL-6 levels are reduced; glucose uptake and utilization are increased. For patients with CKD, exercise may improve insulin signaling and build up muscle. Treatment strategies for preventing muscle atrophy are discussed. 1. Introduction Insulin resistance describes a physiological condition which is characterized by reduced tissue responses to the action of insulin for any given blood concentration of the hormone. It is a common finding in chronic kidney disease but it largely goes unrecognized. In nondiabetic patients with end stage renal disease, this is manifested by mild fasting hyperglycemia and abnormal glucose tolerance testing during an oral or intravenous glucose load. Patients may develop hyperglycemia or maintain normoglycemia at the expense of hyperinsulinemia [1, 2]. These changes are often masked by a decline in the metabolic clearance of insulin that occurs as the glomerular filtration rate drops below 15 to 20 mL/minute. Between glomerular filtration rates of 20 to 40 mL/minute, peritubular insulin uptake increases to maintain renal insulin clearance [3]. In uremia, degradation of insulin in nonrenal tissues such as liver and muscle is impaired and the half-life of insulin is prolonged. It is hypothesized that accumulation of uremic toxins may inhibit insulin degradation particularly by the liver. Although the latter is responsible for removal of approximately 50% of the insulin secreted into the portal circulation [4], the major site of insulin resistance is in the peripheral

References

[1]  R. A. DeFronzo, A. Alvestrand, D. Smith, R. Hendler, E. Hendler, and J. Wahren, “Insulin resistance in uremia,” Journal of Clinical Investigation, vol. 67, no. 2, pp. 563–568, 1981.
[2]  R. H. K. Mak, G. B. Haycock, and C. Chantler, “Glucose intolerance in children with chronic renal failure,” Kidney International, vol. 24, supplement 15, pp. S22–S26, 1983.
[3]  R. Rabkin, N. M. Simon, S. Steiner, and J. A. Colwell, “Effect of renal disease on renal uptake and excretion of insulin in man,” New England Journal of Medicine, vol. 282, no. 4, pp. 182–187, 1970.
[4]  C. E. Mondon, C. B. Dolkas, and G. M. Reaven, “Effect of acute uremia on insulin removal by the isolated perfused rat liver and muscle,” Metabolism: Clinical and Experimental, vol. 27, no. 2, pp. 133–142, 1978.
[5]  F. Cecchin, O. Ittoop, M. K. Sinha, and J. F. Caro, “Insulin resistance in uremia: insulin receptor kinase activity in liver and muscle from chronic uremic rats,” American Journal of Physiology, vol. 254, no. 4, part 1, pp. E394–E401, 1988.
[6]  T. Tsao, F. Fervenza, M. Friedlaender, Y. Chen, and R. Rabkin, “Effect of prolonged uremia on insulin-like growth factor-I receptor autophosphorylation and tyrosine kinase activity in kidney and muscle,” Experimental Nephrology, vol. 10, no. 4, pp. 285–292, 2002.
[7]  H. Ding, X. L. Gao, R. Hirschberg, J. V. Vadgama, and J. D. Kopple, “Impaired actions of insulin-like growth factor 1 on protein synthesis and degradation in skeletal muscle of rats with chronic renal failure: evidence for a postreceptor defect,” Journal of Clinical Investigation, vol. 97, no. 4, pp. 1064–1075, 1996.
[8]  J. L. Bailey, B. Zheng, Z. Hu, S. R. Price, and W. E. Mitch, “Chronic kidney disease causes defects in signaling through the insulin receptor substrate/phosphatidylinositol 3-kinase/Akt pathway: implications for muscle atrophy,” Journal of the American Society of Nephrology, vol. 17, no. 5, pp. 1388–1394, 2006.
[9]  H. A. Franch and S. R. Price, “Molecular signaling pathways regulating muscle proteolysis during atrophy,” Current Opinion in Clinical Nutrition and Metabolic Care, vol. 8, no. 3, pp. 271–275, 2005.
[10]  S. W. Lee, G. Dai, Z. Hu, X. Wang, J. Du, and W. E. Mitch, “Regulation of muscle protein degradation: coordinated control of apoptotic and ubiquitin-proteasome systems by phosphatidylinositol 3 kinase,” Journal of the American Society of Nephrology, vol. 15, no. 6, pp. 1537–1545, 2004.
[11]  J. M. Sacheck, A. Ohtsuka, S. C. McLary, and A. L. Goldberg, “IGF-I stimulates muscle growth by suppressing protein breakdown and expression of atrophy-related ubiquitin ligases, atrogin-1 and MuRF1,” American Journal of Physiology, vol. 287, no. 4, pp. E591–E601, 2004.
[12]  M. J. A. Saad, F. Folli, J. A. Kahn, and C. R. Kahn, “Modulation of insulin receptor, insulin receptor substrate-1, and phosphatidylinositol 3-kinase in liver and muscle of dexamethasone-treated rats,” Journal of Clinical Investigation, vol. 92, no. 4, pp. 2065–2072, 1993.
[13]  F. Giorgino, M. T. Pedrini, L. Matera, and R. J. Smithi, “Specific increase in p85α expression in response to dexamethasone is associated with inhibition of insulin-like growth factor-I stimulated phosphatidylinositol 3-kinase activity in cultured muscle cells,” Journal of Biological Chemistry, vol. 272, no. 11, pp. 7455–7463, 1997.
[14]  F. Giorgino, A. Almahfouz, L. J. Goodyear, and R. J. Smith, “Glucocorticoid regulation of insulin receptor and substrate IRS-1 tyrosine phosphorylation in rat skeletal muscle in vivo,” Journal of Clinical Investigation, vol. 91, no. 5, pp. 2020–2030, 1993.
[15]  R. C. May, R. A. Kelly, and W. E. Mitch, “Mechanisms for defects in muscle protein metabolism in rats with chronic uremia. Influence of metabolic acidosis,” Journal of Clinical Investigation, vol. 79, no. 4, pp. 1099–1103, 1987.
[16]  B. Vanhaesebroeck and D. R. Alessi, “The PI3K-PBK1 connection: more than just a road to PKB,” Biochemical Journal, vol. 346, no. 3, pp. 561–576, 2000.
[17]  C. L. Sable, N. Filippa, B. Hemmings, and E. van Obberghen, “cAMP stimulates protein kinase B in a Wortmannin-insensitive manner,” FEBS Letters, vol. 409, no. 2, pp. 253–257, 1997.
[18]  K. Ueki, R. Yamamoto-Honda, Y. Kaburagi et al., “Potential role of protein kinase B in insulin-induced glucose transport, glycogen synthesis, and protein synthesis,” Journal of Biological Chemistry, vol. 273, no. 9, pp. 5315–5322, 1998.
[19]  E. L. Whiteman, H. Cho, and M. J. Birnbaum, “Role of Akt/protein kinase B in metabolism,” Trends in Endocrinology and Metabolism, vol. 13, no. 10, pp. 444–451, 2002.
[20]  H. Cho, J. L. Thorvaldsen, Q. Chu, F. Feng, and M. J. Birnbaum, “Akt1/PKBα is required for normal growth but dispensable for maintenance of glucose homeostasis in mice,” Journal of Biological Chemistry, vol. 276, no. 42, pp. 38349–38352, 2001.
[21]  H. Cho, J. Mu, J. K. Kim et al., “Insulin resistance and a diabetes mellitus-like syndrome in mice lacking the protein kinase Akt2 (PKBβ),” Science, vol. 292, no. 5522, pp. 1728–1731, 2001.
[22]  R. M. Easton, H. Cho, K. Roovers et al., “Role for Akt3/protein kinase by in attainment of normal brain size,” Molecular and Cellular Biology, vol. 25, no. 5, pp. 1869–1878, 2005.
[23]  M. Wan, R. M. Easton, C. E. Gleason et al., “Loss of Akt 1 in mice increases energy expenditure and protects against diet-induced obesity,” Molecular and Cellular Biology, vol. 32, no. 1, pp. 96–106, 2012.
[24]  S. C. Bodine, T. N. Stitt, M. Gonzalez et al., “Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo,” Nature Cell Biology, vol. 3, no. 11, pp. 1014–1019, 2001.
[25]  W. S. Chen, P. Z. Xu, K. Gottlob et al., “Growth retardation and increased apoptosis in mice with homozygous disruption of the akt1 gene,” Genes and Development, vol. 15, no. 17, pp. 2203–2208, 2001.
[26]  J. Dupont, J. P. Renou, M. Shani, L. Hennighausen, and D. LeRoith, “PTEN overexpression suppresses proliferation and differentiation and enhances apoptosis of the mouse mammary epithelium,” Journal of Clinical Investigation, vol. 110, no. 6, pp. 815–825, 2002.
[27]  Y. T. Lo, C. J. Tsao, I. M. Liu, S. S. Liou, and J. T. Cheng, “Increase of PTEN gene expression in insulin resistance,” Hormone and Metabolic Research, vol. 36, no. 10, pp. 662–666, 2004.
[28]  N. Wijesekara, D. Konrad, M. Eweida et al., “Muscle-specific Pten deletion protects against insulin resistance and diabetes,” Molecular and Cellular Biology, vol. 25, no. 3, pp. 1135–1145, 2005.
[29]  Z. Hu, H. L. In, X. Wang et al., “PTEN expression contributes to the regulation of muscle protein degradation in diabetes,” Diabetes, vol. 56, no. 10, pp. 2449–2456, 2007.
[30]  D. Accili and K. C. Arden, “FoxOs at the crossroads of cellular metabolism, differentiation, and transformation,” Cell, vol. 117, no. 4, pp. 421–426, 2004.
[31]  J. E. Ayala, R. S. Streeper, J. S. Desgrosellier et al., “Conservation of an insulin response unit between mouse and human glucose-6-phosphatase catalytic subunit gene promoters: transcription factor FKHR binds the insulin response sequence,” Diabetes, vol. 48, no. 9, pp. 1885–1889, 1999.
[32]  J. Nakae, T. Kitamura, D. L. Silver, and D. Accili, “The forkhead transcription factor Foxo1 (Fkhr) confers insulin sensitivity onto glucose-6-phosphatase expression,” Journal of Clinical Investigation, vol. 108, no. 9, pp. 1359–1367, 2001.
[33]  R. H. Medema, G. J. P. L. Kops, J. L. Bos, and B. M. T. Burgering, “AFX-like Forkhead transcription factors mediate cell-cycle regulation by Ras and PKB through p27(kip1),” Nature, vol. 404, no. 6779, pp. 782–787, 2000.
[34]  G. J. P. L. Kops, T. B. Dansen, P. E. Polderman et al., “Forkhead transcription factor FOXO3a protects quiescent cells from oxidative stress,” Nature, vol. 419, no. 6904, pp. 316–321, 2002.
[35]  M. V. Chakravarthy, B. S. Davis, and F. W. Booth, “IGF-I restores satellite cell proliferative potential in immobilized old skeletal muscle,” Journal of Applied Physiology, vol. 89, no. 4, pp. 1365–1379, 2000.
[36]  M. Sandri, C. Sandri, A. Gilbert et al., “Foxo transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy,” Cell, vol. 117, no. 3, pp. 399–412, 2004.
[37]  T. N. Stitt, D. Drujan, B. A. Clarke et al., “The IGF-1/PI3K/Akt pathway prevents expression of muscle atrophy-induced ubiquitin ligases by inhibiting FOXO transcription factors,” Molecular Cell, vol. 14, no. 3, pp. 395–403, 2004.
[38]  Y. Kamei, S. Miura, M. Suzuki et al., “Skeletal muscle FOXO1 (FKHR) transgenic mice have less skeletal muscle mass, down-regulated type I (slow twitch/red muscle) fiber genes, and impaired glycemic control,” Journal of Biological Chemistry, vol. 279, no. 39, pp. 41114–41123, 2004.
[39]  J. Lin, H. Wu, P. T. Tarr et al., “Transcriptional co-activator PGC-1α drives the formation of slow-twitch muscle fibres,” Nature, vol. 418, no. 6899, pp. 797–801, 2002.
[40]  C. Zechner, L. Lai, J. F. Zechner et al., “Total skeletal muscle PGC-1 deficiency uncouples mitochondrial derangements from fiber type determination and insulin sensitivity,” Cell Metabolism, vol. 12, no. 6, pp. 633–642, 2010.
[41]  B. B. Lowell and G. I. Shulman, “Mitochondrial dysfunction and type 2 diabetes,” Science, vol. 307, no. 5708, pp. 384–387, 2005.
[42]  K. Morino, K. F. Petersen, S. Dufour et al., “Reduced mitochondrial density and increased IRS-1 serine phosphorylation in muscle of insulin-resistant offspring of type 2 diabetic parents,” Journal of Clinical Investigation, vol. 115, no. 12, pp. 3587–3593, 2005.
[43]  K. F. Petersen, S. Dufour, K. Morino, P. S. Yoo, G. W. Cline, and G. I. Shulman, “Reversal of muscle Insulin resistance by weight reduction in young, lean, insulin-resistant offspring of parents with type 2 diabetes,” Proceedings of the National Academy of Sciences of the United States of America, vol. 109, no. 21, pp. 8236–8240, 2012.
[44]  S. Schiaffino, “Fibre types in skeletal muscle: a personal account,” Acta Physiologica, vol. 199, no. 4, pp. 451–463, 2010.
[45]  F. J. Naya, B. Mercer, J. Shelton, J. A. Richardson, R. S. Williams, and E. N. Olson, “Stimulation of slow skeletal muscle fiber gene expression by calcineurin in vivo,” Journal of Biological Chemistry, vol. 275, no. 7, pp. 4545–4548, 2000.
[46]  H. Wu, S. B. Kanatous, F. A. Thurmond et al., “Regulation of mitochondrial biogenesis in skeletal muscle by caMK,” Science, vol. 296, no. 5566, pp. 349–352, 2002.
[47]  E. R. Chin, E. N. Olson, J. A. Richardson et al., “A calcineurin-dependent transcriptional pathway controls skeletal muscle fiber type,” Genes and Development, vol. 12, no. 16, pp. 2499–2509, 1998.
[48]  P. G. Hogan, L. Chen, J. Nardone, and A. Rao, “Transcriptional regulation by calcium, calcineurin, and NFAT,” Genes and Development, vol. 17, no. 18, pp. 2205–2232, 2003.
[49]  T. K. Roberts-Wilson, R. N. Reddy, J. L. Bailey et al., “Calcineurin signaling and PGC-1α expression are suppressed during muscle atrophy due to diabetes,” Biochimica et Biophysica Acta, vol. 1803, no. 8, pp. 960–967, 2010.
[50]  J. L. Bailey, X. Wang, B. K. England, S. R. Price, X. Ding, and W. E. Mitch, “The acidosis of chronic renal failure activates muscle proteolysis in rats by augmenting transcription of genes encoding proteins of the ATP-dependent ubiquitin-proteasome pathway,” Journal of Clinical Investigation, vol. 97, no. 6, pp. 1447–1453, 1996.
[51]  S. R. Price, J. L. Bailey, X. Wang et al., “Muscle wasting in insulinopenic rats results from activation of the ATP-dependent, ubiquitin-proteasome proteolytic pathway by a mechanism including gene transcription,” Journal of Clinical Investigation, vol. 98, no. 8, pp. 1703–1708, 1996.
[52]  Y. H. Song, Y. Li, J. Du, W. E. Mitch, N. Rosenthal, and P. Delafontaine, “Muscle-specific expression of IGF-1 blocks angiotensin II-induced skeletal muscle wasting,” Journal of Clinical Investigation, vol. 115, no. 2, pp. 451–458, 2005.
[53]  P. Stenvinkel, O. Heimbürger, F. Paultre et al., “Strong association between malnutrition, inflammation, and atherosclerosis in chronic renal failure,” Kidney International, vol. 55, no. 5, pp. 1899–1911, 1999.
[54]  R. C. May, J. L. Bailey, W. E. Mitch, T. Masud, and B. K. England, “Glucocorticoids and acidosis stimulate protein and amino acid catabolism in vivo,” Kidney International, vol. 49, no. 3, pp. 679–683, 1996.
[55]  R. C. May, R. A. Kelly, and W. E. Mitch, “Metabolic acidosis stimulates protein degradation in rat muscle by a glucocorticoid-dependent mechanism,” Journal of Clinical Investigation, vol. 77, no. 2, pp. 614–621, 1986.
[56]  R. H. K. Mak, “Insulin resistance but IGF-I sensitivity in chronic renal failure,” American Journal of Physiology, vol. 271, no. 1, pp. F114–F119, 1996.
[57]  D. Reaich, K. A. Graham, S. M. Channon et al., “Insulin-mediated changes in PD and glucose uptake after correction of acidosis in humans with CRF,” American Journal of Physiology, vol. 268, no. 1, pp. E121–E126, 1995.
[58]  R. H. K. Mak, “Effect of metabolic acidosis on insulin action and secretion in uremia,” Kidney International, vol. 54, no. 2, pp. 603–607, 1998.
[59]  G. Garibotto, R. Russo, A. Sofia et al., “Skeletal muscle protein synthesis and degradation in patients with chronic renal failure,” Kidney International, vol. 45, no. 5, pp. 1432–1439, 1994.
[60]  S. H. Lecker and W. E. Mitch, “Proteolysis by the ubiquitin-proteasome system and kidney disease,” Journal of the American Society of Nephrology, vol. 22, no. 5, pp. 821–824, 2011.
[61]  D. Larbaud, M. Balage, D. Taillandier, L. Combaret, J. Grizard, and D. Attaix, “Differential regulation of the lysosomal, Ca2+-dependent and ubiquitin/proteasome-dependent proteolytic pathways in fast-twitch and slow-twitch rat muscle following hyperinsulinaemia,” Clinical Science, vol. 101, no. 6, pp. 551–558, 2001.
[62]  M. Bartoli and I. Richard, “Calpains in muscle wasting,” International Journal of Biochemistry and Cell Biology, vol. 37, no. 10, pp. 2115–2133, 2005.
[63]  A. J. Murton, D. Constantin, and P. L. Greenhaff, “The involvement of the ubiquitin proteasome system in human skeletal muscle remodelling and atrophy,” Biochimica et Biophysica Acta, vol. 1782, no. 12, pp. 730–743, 2008.
[64]  E. E. Patton, A. R. Willems, and M. Tyers, “Combinatorial control in ubiquitin-dependent proteolysis: don't Skp the F-box hypothesis,” Trends in Genetics, vol. 14, no. 6, pp. 236–243, 1998.
[65]  D. Attaix, S. Ventadour, A. Codran, D. Béchet, D. Taillandier, and L. Combaret, “The ubiquitin-proteasome system and skeletal muscle wasting,” Essays in Biochemistry, vol. 41, pp. 173–186, 2005.
[66]  C. H. Lang, D. Huber, and R. A. Frost, “Burn-induced increase in atrogin-1 and MuRF-1 in skeletal muscle is glucocorticoid independent but downregulated by IGF-I,” American Journal of Physiology, vol. 292, no. 1, pp. R328–R336, 2007.
[67]  S. H. Lecker, R. T. Jagoe, A. Gilbert et al., “Multiple types of skeletal muscle atrophy involve a common program of changes in gene expression,” FASEB Journal, vol. 18, no. 1, pp. 39–51, 2004.
[68]  S. C. Bodine, E. Latres, S. Baumhueter et al., “Identification of ubiquitin ligases required for skeletal Muscle Atrophy,” Science, vol. 294, no. 5547, pp. 1704–1708, 2001.
[69]  Y. P. Li, Y. Chen, J. John et al., “TNF-α acts via p38 MAPK to stimulate expression of the ubiquitin ligase atrogin1/MAFbx in skeletal muscle,” FASEB Journal, vol. 19, no. 3, pp. 362–370, 2005.
[70]  B. A. Clarke, D. Drujan, M. S. Willis et al., “The E3 ligase MuRF1 degrades myosin heavy chain protein in dexamethasone-treated skeletal muscle,” Cell Metabolism, vol. 6, no. 5, pp. 376–385, 2007.
[71]  Y. Kamei, S. Miura, M. Suzuki et al., “Skeletal muscle FOXO1 (FKHR) transgenic mice have less skeletal muscle mass, down-regulated type I (slow twitch/red muscle) fiber genes, and impaired glycemic control,” Journal of Biological Chemistry, vol. 279, no. 39, pp. 41114–41123, 2004.
[72]  W. E. Mitch and A. L. Goldberg, “Mechanisms of disease: mechanisms of muscle wasting: the role of the ubiquitin-proteasome pathway,” New England Journal of Medicine, vol. 335, no. 25, pp. 1897–1905, 1996.
[73]  S. H. Lecker, V. Solomon, W. E. Mitch, and A. L. Goldberg, “Muscle protein breakdown and the critical role of the ubiquitin-proteasome pathway in normal and disease states,” Journal of Nutrition, vol. 129, no. 1, pp. 227S–237S, 1999.
[74]  V. Solomon and A. L. Goldberg, “Importance of the ATP-ubiquitin-proteasome pathway in the degradation of soluble and myofibrillar proteins in rabbit muscle extracts,” Journal of Biological Chemistry, vol. 271, no. 43, pp. 26690–26697, 1996.
[75]  T. Mashima, M. Naito, K. Noguchi, D. K. Miller, D. W. Nicholson, and T. Tsuruo, “Actin cleavage by CPP-32/apopain during the development of apoptosis,” Oncogene, vol. 14, no. 9, pp. 1007–1012, 1997.
[76]  C. Kayalar, T. ?rd, M. P. Testa, L. T. Zhong, and D. E. Bredesen, “Cleavage of actin by interleukin 1β-converting enzyme to reverse DNase I inhibition,” Proceedings of the National Academy of Sciences of the United States of America, vol. 93, no. 5, pp. 2234–2238, 1996.
[77]  J. Du, X. Wang, C. Miereles et al., “Activation of caspase-3 is an initial step triggering accelerated muscle proteolysis in catabolic conditions,” Journal of Clinical Investigation, vol. 113, no. 1, pp. 115–123, 2004.
[78]  S. Cohen, J. J. Brault, S. P. Gygi et al., “During muscle atrophy, thick, but not thin, filament components are degraded by MuRF1-dependent ubiquitylation,” Journal of Cell Biology, vol. 185, no. 6, pp. 1083–1095, 2009.
[79]  M. Brink, S. R. Price, J. Chrast et al., “Angiotensin II induces skeletal muscle wasting through enhanced protein degradation and down-regulates autocrine insulin-like growth factor I,” Endocrinology, vol. 142, no. 4, pp. 1489–1496, 2001.
[80]  Y. H. Song, Y. Li, J. Du, W. E. Mitch, N. Rosenthal, and P. Delafontaine, “Muscle-specific expression of IGF-1 blocks angiotensin II-induced skeletal muscle wasting,” Journal of Clinical Investigation, vol. 115, no. 2, pp. 451–458, 2005.
[81]  L. Zhang, J. Du, Z. Hu et al., “IL-6 and serum amyloid a synergy mediates angiotensin II-induced muscle wasting,” Journal of the American Society of Nephrology, vol. 20, no. 3, pp. 604–612, 2009.
[82]  T. Zera, M. Ufnal, and E. Szczepanska-Sadowska, “Central TNF-α elevates blood pressure and sensitizes to central pressor action of angiotensin II in the infarcted rats,” Journal of Physiology and Pharmacology, vol. 59, supplement 8, pp. 117–121, 2008.
[83]  M. Brink, A. Anwar, and P. Delafontaine, “Neurohormonal factors in the development of catabolic/anabolic imbalance and cachexia,” International Journal of Cardiology, vol. 85, no. 1, pp. 111–121, 2002.
[84]  M. Mitsuishi, K. Miyashita, A. Muraki, and H. Itoh, “Angiotensin II reduces mitochondrial content in skeletal muscle and affects glycemic control,” Diabetes, vol. 58, no. 3, pp. 710–717, 2009.
[85]  A. M. Tabony, T. Yoshida, S. Galvez et al., “Angiotensin II upregulates protein phosphatase 2C alpha and inhibits AMP-activated protein kinase signaling and energy balance leading to skeletal muscle wasting,” Hypertension, vol. 58, pp. 643–649, 2011.
[86]  G. R. Steinberg, S. L. Macaulay, M. A. Febbraio, and B. E. Kemp, “AMP-activated protein kinase—the fat controller of the energy railroad,” Canadian Journal of Physiology and Pharmacology, vol. 84, no. 7, pp. 655–665, 2006.
[87]  B. B. Kahn, T. Alquier, D. Carling, and D. G. Hardie, “AMP-activated protein kinase: ancient energy gauge provides clues to modern understanding of metabolism,” Cell Metabolism, vol. 1, no. 1, pp. 15–25, 2005.
[88]  B. E. Kemp, D. Stapleton, D. J. Campbell et al., “AMP-activated protein kinase, super metabolic regulator,” Biochemical Society Transactions, vol. 31, no. 1, pp. 162–168, 2003.
[89]  N. B. Ruderman, A. K. Saha, D. Vavvas, and L. A. Witters, “Malonyl-CoA, fuel sensing, and insulin resistance,” American Journal of Physiology, vol. 276, no. 1, pp. E1–E18, 1999.
[90]  M. Gaster, A. C. Rustan, V. Aas, and H. Beck-Nielsen, “Reduced lipid oxidation in skeletal muscle from type 2 diabetic subjects may be of genetic origin: evidence from cultured myotubes,” Diabetes, vol. 53, no. 3, pp. 542–548, 2004.
[91]  G. K. Bandyopadhyay, J. G. Yu, J. Ofrecio, and J. M. Olefsky, “Increased malonyl-CoA levels in muscle from obese and type 2 diabetic subjects lead to decreased fatty acid oxidation and increased lipogenesis; thiazolidinedione treatment reverses these defects,” Diabetes, vol. 55, no. 8, pp. 2277–2285, 2006.
[92]  G. R. Steinberg, B. J. Michell, B. J. W. van Denderen et al., “Tumor necrosis factor α-induced skeletal muscle insulin resistance involves suppression of AMP-kinase signaling,” Cell Metabolism, vol. 4, no. 6, pp. 465–474, 2006.
[93]  S. L. McGee and M. Hargreaves, “AMPK-mediated regulation of transcription in skeletal muscle,” Clinical Science, vol. 118, no. 8, pp. 507–518, 2010.
[94]  L. E. Stefanyk and D. J. Dyck, “The interaction between adipokines, diet and exercise on muscle insulin sensitivity,” Current Opinion in Clinical Nutrition and Metabolic Care, vol. 13, no. 3, pp. 255–259, 2010.
[95]  C. P. Fischer, “Interleukin-6 in acute exercise and training: what is the biological relevance?” Exercise Immunology Review, vol. 12, pp. 6–33, 2006.
[96]  I. Nieto-Vazquez, S. Fernandez-Veledo, C. de Alvaro, and M. Lorenzo, “Dual role of interleukin-6 in regulating insulin sensitivity in murine skeletal muscle,” Diabetes, vol. 57, no. 12, pp. 3211–3221, 2008.
[97]  B. K. Pedersen and M. A. Febbraio, “Muscle as an endocrine organ: focus on muscle-derived interleukin-6,” Physiological Reviews, vol. 88, no. 4, pp. 1379–1406, 2008.
[98]  L. Rui, V. Aguirre, J. K. Kim et al., “Insulin/IGF-1 and TNF-α stimulate phosphorylation of IRS-1 at inhibitory Ser307 via distinct pathways,” Journal of Clinical Investigation, vol. 107, no. 2, pp. 181–189, 2001.
[99]  C. de Alvaro, T. Teruel, R. Hernandez, and M. Lorenzo, “Tumor necrosis factor α produces insulin resistance in skeletal muscle by activation of inhibitor κB kinase in a p38 MAPK-dependent manner,” Journal of Biological Chemistry, vol. 279, no. 17, pp. 17070–17078, 2004.
[100]  J. Rieusset, K. Bouzakri, E. Chevillotte et al., “Suppressor of cytokine signaling 3 expression and insulin resistance in skeletal muscle of obese and type 2 diabetic patients,” Diabetes, vol. 53, no. 9, pp. 2232–2241, 2004.
[101]  K. Ueki, T. Kondo, and C. R. Kahn, “Suppressor of cytokine signaling 1 (SOCS-1) and SOCS-3 cause insulin resistance through inhibition of tyrosine phosphorylation of insulin receptor substrate proteins by discrete mechanisms,” Molecular and Cellular Biology, vol. 24, no. 12, pp. 5434–5446, 2004.
[102]  I. Nieto-Vazquez, S. Fernández-Veledo, C. de Alvaro, C. M. Rondinone, A. M. Valverde, and M. Lorenzo, “Protein-tyrosine phosphatase 1B-deficient myocytes show increased insulin sensitivity and protection against tumor necrosis factor-α-induced insulin resistance,” Diabetes, vol. 56, no. 2, pp. 404–413, 2007.
[103]  J. M. Zabolotny, Y. B. Kim, L. A. Welsh, E. E. Kershaw, B. G. Neel, and B. B. Kahn, “Protein-tyrosine phosphatase 1B expression is induced by inflammation in vivo,” Journal of Biological Chemistry, vol. 283, no. 21, pp. 14230–14241, 2008.
[104]  B. Zahorska-Markiewicz, J. Janowska, M. Olszanecka-Glinianowicz, and A. Zurakowski, “Serum concentrations of TNF-α and soluble TNF-α receptors in obesity,” International Journal of Obesity, vol. 24, no. 11, pp. 1392–1395, 2000.
[105]  M. A. Febbraio, A. Steensberg, R. L. Starkie, G. K. McConell, and B. A. Kingwell, “Skeletal muscle interleukin-6 and tumor necrosis factor-α release in healthy subjects and patients with type 2 diabetes at rest and during exercise,” Metabolism: Clinical and Experimental, vol. 52, no. 7, pp. 939–944, 2003.
[106]  I. S. Lee, G. Shin, and R. Choue, “Shifts in diet from high fat to high carbohydrate improved levels of adipokines and pro-inflammatory cytokines in mice fed a high-fat diet,” Endocrine Journal, vol. 57, no. 1, pp. 39–50, 2010.
[107]  J. D. Kopple, H. Wang, R. Casaburi et al., “Exercise in maintenance hemodialysis patients induces transcriptional changes in genes favoring anabolic muscle,” Journal of the American Society of Nephrology, vol. 18, no. 11, pp. 2975–2986, 2007.
[108]  Y. Chen, S. Sood, J. Biada, R. Roth, and R. Rabkin, “Increased workload fully activates the blunted IRS-1/PI3-kinase/Akt signaling pathway in atrophied uremic muscle,” Kidney International, vol. 73, no. 7, pp. 848–855, 2008.
[109]  D. F. Sun, Y. Chen, and R. Rabkin, “Work-induced changes in skeletal muscle IGF-1 and myostatin gene expression in uremia,” Kidney International, vol. 70, no. 3, pp. 453–459, 2006.
[110]  X. H. Wang, J. Du, J. D. Klein, J. L. Bailey, and W. E. Mitch, “Exercise ameliorates chronic kidney disease-induced defects in muscle protein metabolism and progenitor cell function,” Kidney International, vol. 76, no. 7, pp. 751–759, 2009.
[111]  S. H. Lecker, A. L. Goldberg, and W. E. Mitch, “Protein degradation by the ubiquitin-proteasome pathway in normal and disease states,” Journal of the American Society of Nephrology, vol. 17, no. 7, pp. 1807–1819, 2006.
[112]  M. Schwarzkopf, D. Coletti, D. Sassoon, and G. Marazzi, “Muscle cachexia is regulated by a p53-PW1/Peg3-dependent pathway,” Genes and Development, vol. 20, no. 24, pp. 3440–3452, 2006.
[113]  S. J. Lee, “Genetic analysis of the role of proteolysis in the activation of latent myostatin,” PLoS ONE, vol. 3, no. 2, article e1628, 2008.
[114]  A. C. McPherron, A. M. Lawler, and S. J. Lee, “Regulation of skeletal muscle mass in mice by a new TGF-β superfamily member,” Nature, vol. 387, no. 6628, pp. 83–90, 1997.
[115]  M. Schuelke, K. R. Wagner, L. E. Stolz et al., “Myostatin mutation associated with gross muscle hypertrophy in a child,” New England Journal of Medicine, vol. 350, no. 26, pp. 2682–2688, 2004.
[116]  D. F. Sun, Y. Chen, and R. Rabkin, “Work-induced changes in skeletal muscle IGF-1 and myostatin gene expression in uremia,” Kidney International, vol. 70, no. 3, pp. 453–459, 2006.
[117]  N. F. Gonzalez-Cadavid, W. E. Taylor, K. Yarasheski et al., “Organization of the human myostatin gene and expression in healthy men and HIV-infected men with muscle wasting,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 25, pp. 14938–14943, 1998.
[118]  D. Gruson, S. A. Ahn, J. M. Ketelslegers, and M. F. Rousseau, “Increased plasma myostatin in heart failure,” European Journal of Heart Failure, vol. 13, no. 7, pp. 734–736, 2011.
[119]  T. A. Zimmers, M. V. Davies, L. G. Koniaris et al., “Induction of cachexia in mice by systemically administered myostatin,” Science, vol. 296, no. 5572, pp. 1486–1488, 2002.
[120]  X. Zhou, J. L. Wang, J. Lu et al., “Reversal of cancer cachexia and muscle wasting by ActRIIB antagonism leads to prolonged survival,” Cell, vol. 142, no. 4, pp. 531–543, 2010.
[121]  L. Zhang, V. Rajan, E. Lin et al., “Pharmacological inhibition of myostatin suppresses systemic inflammation and muscle atrophy in mice with chronic kidney disease,” FASEB Journal, vol. 25, no. 5, pp. 1653–1663, 2011.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133