全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
ISRN Forestry  2012 

Variation in Woody Species Abundance and Distribution in and around Kibale National Park, Uganda

DOI: 10.5402/2012/490461

Full-Text   Cite this paper   Add to My Lib

Abstract:

Several protected areas in Uganda are increasingly facing encroachment making farmlands indispensable hubs for biodiversity conservation. A comparative study was conducted comprising a protected area in Kibale National Park and surrounding farmlands to establish how farmlands mimic the forest floristic structure. Study results show very low similarity between the forest and farmland ecosystems ( ). A total of 50 and 29 species were identified in the forest and, farmland, respectively; 8 were shared. Importance value indices of woody species in the forest ranged from 0.3 to 29.9 with Celtis durandii being the most important while those in the farmland were 1.9–79.2, Eucalyptus grandis, having the highest index. Woody species diversity and evenness were higher in the forest ecosystem ( , ) compared to the farmland ( , ). The 10–<20?cm diameter class was the lowest in both ecosystems. Communities adjacent to the park should be educated about the value of the park and conservation in general. Since adjacent farmlands provide important ecotones to the park, on-farm indigenous tree retention and planting are required. Further research on threatened species is needed to enhance conservation in and around KNP. 1. Introduction Kibale National Park received the protected status as a national park in 1993 [1, 2]. It was initially Kibale forest and a hunting ground for the Omukama of Tooro [3]. It underwent a series of transformations from being a gazetted Crown Forest in 1932 to Central Forest Reserve in 1948 and was gazetted as Kibale Forest Game Corridor in 1964 [4]. However, just like in other developing countries, Uganda’s protected areas such as Kibale National Park (KNP) experience extensive human disturbances due to hunting, grazing, settlement, cultivation, fuel wood extraction, and collection of nonwood forest products which contribute to the livelihood of communities adjacent to protected forests [5]. In turn, these negatively affect tree growth and forest cover [6]. Hamilton [7] reported that changes in the patterns of woody species diversity and distribution in forests and farmland ecosystems can also be attributed to environmental factors such as canopy density, slope, soil, and altitude. Woody species composition usually varies with altitude whereby species numbers generally decline with elevation. There are also indirect effects of regional and global human industrial activities that influence the Earth’s atmosphere and climate. Such environmental and human activities can lead to loss of woody species diversity, reduced species composition, and

References

[1]  T. C. Whitmore, An Introduction to Tropical Rain Forests, Oxford University Press, Oxford, UK, 1998.
[2]  K. B. Potts, C. A. Chapman, and J. S. Lwanga, “Floristic heterogeneity between forested sites in Kibale National Park, Uganda: insights into the fine-scale determinants of density in a large-bodied frugivorous primate,” Journal of Animal Ecology, vol. 78, no. 6, pp. 1269–1277, 2009.
[3]  W. Bikaako-Kajura, “Property Rights, Community Participation and Natural Resource Management: The Dynamics of the Tenure Question and Management of Kibale Forest Park,” NURRU Working Paper, 2001.
[4]  H. A. Osmaston, Working Plan for the Kibale and Itwara Forests, Uganda Forest Department, Entebbe, Uganda, 1959.
[5]  S. J. Wright, “Plant diversity in tropical forests: a review of mechanisms of species coexistence,” Oecologia, vol. 130, no. 1, pp. 1–14, 2002.
[6]  R. Kumar and G. Shahabuddin, “Effects of biomass extraction on vegetation structure, diversity and composition of forests in Sariska Tiger Reserve, India,” Environmental Conservation, vol. 32, no. 3, pp. 248–259, 2005.
[7]  A. C. Hamilton, “Tropical rain forest ecosystems,” in Ecosystems of the World, H. Leith and M. J. Werger, Eds., vol. 14, pp. 155–182, Elsevier, Amsterdam, The Netherlands, 1989.
[8]  E. Waltari, R. J. Hijmans, A. T. Peterson, á. S. Nyári, S. L. Perkins, and R. P. Guralnick, “Locating pleistocene refugia: comparing phylogeographic and ecological niche model predictions,” PloS one, vol. 2, no. 6, p. e563, 2007.
[9]  G. Eilu and J. Obua, “Tree condition and natural regeneration in disturbed sites of Bwindi Impenetrable Forest National Park, southwestern Uganda,” Tropical Ecology, vol. 46, no. 1, pp. 99–111, 2005.
[10]  J. R. S. Tabuti, T. Ticktin, M. Z. Arinaitwe, and V. B. Muwanika, “Community attitudes and preferences towards woody species: implications for conservation in Nawaikoke, Uganda,” ORYX, vol. 43, no. 3, pp. 393–402, 2009.
[11]  Uganda Bureau of Statistics, Uganda Statistical Abstract 2010, Uganda Bureau of Statistics, Kampala, Uganda, 2010.
[12]  National Environment Management Authority, State of the Environment Report for Uganda 2002, National Environment Management Authority, Kampala, Uganda, 2002.
[13]  UETCL, “Uganda Electricity Transmission Company Ltd Corporate Business Plan 2008–2013,” Kampala, Uganda, 2008.
[14]  K. Warner, Community Forestry Field Manual 5: Selecting Tree Species on the Basis of Community Needs, Food and Agriculture Organization, Rome, Italy, 1999.
[15]  M. L. Carter, H. Pontzer, R. W. Wrangham, and J. K. Peterhans, “Skeletal pathology in Pan troglodytes schweinfurthii in Kibale National Park, Uganda,” American Journal of Physical Anthropology, vol. 135, no. 4, pp. 389–403, 2008.
[16]  M. N. Muller, S. M. Kahlenberg, T. M. Emery, and R. W. Wrangham, “Male coercion and the costs of promiscuous mating for female chimpanzees,” Proceedings of the Royal Society B, vol. 274, no. 1612, pp. 1009–1014, 2007.
[17]  K. G. Duffy, R. W. Wrangham, and J. B. Silk, “Male chimpanzees exchange political support for mating opportunities,” Current Biology, vol. 17, no. 15, pp. R586–R587, 2007.
[18]  H. Pontzer and R. W. Wrangham, “Climbing and the daily energy cost of locomotion in wild chimpanzees: implications for hominoid locomotor evolution,” Journal of Human Evolution, vol. 46, no. 3, pp. 317–335, 2004.
[19]  C. A. Chapman and J. E. Lambert, “Habitat alteration and the conservation of African primates: a case study of Kibale National Park, Uganda,” American Journal of Primatology, vol. 50, no. 3, pp. 169–185, 2000.
[20]  C. A. Chapman and L. J. Chapman, “Forest regeneration in logged and unlogged forests of Kibale National Park, Uganda,” Biotropica, vol. 29, no. 4, pp. 396–412, 1997.
[21]  L. Kaufman, L. J. Chapman, C. A. Chapman, and A. E. Zanne, “Potential causes of arrested succession in Kibale National Park, Uganda: growth and mortality of seedlings,” African Journal of Ecology, vol. 37, no. 1, pp. 81–92, 1999.
[22]  J. R. S. Tabuti, “The uses, local perceptions and ecological status of 16 woody species of Gadumire Sub-county, Uganda,” Biodiversity and Conservation, vol. 16, no. 6, pp. 1901–1915, 2007.
[23]  J. G. Agea, J. Obua, J. R. S. Kaboggoza, and D. Waiswa, “Diversity of indigenous fruit trees in the traditional cotton-millet farming system: the case of Adwari subcounty, Lira district, Uganda,” African Journal of Ecology, vol. 45, no. 3, pp. 39–43, 2007.
[24]  K. Mitchell, Quantitative Analysis by the Point-Centered Quarter Method, Department of Mathematics and Computer Science, Hobart and William Smith Colleges, Geneva, Switzerland, 2005.
[25]  R. L. Smith and T. M. Smith, Ecology and Field Biology, Addison-Wesley, 6th edition, 2001.
[26]  A. E. Magurran, Measuring Biological Diversity, Blackwell Publishing Company, 2004.
[27]  M. Kent and P. Coker, Vegetation Description and Analysis, Belhaven Press, London, UK, 1992.
[28]  J. E. Brower, J. H. Zar, and C. N. von Ende, Field and Laboratories Methods for General Ecology, McGraw-Hill, New York, NY, USA, 1997.
[29]  D. Korbee, Environmental Security in Bwindi: A Focus on Farmers, Institute of Environmental Security, The Hague, The Netherlands, 2007.
[30]  I. M. Turner, “Rainforest ecosystems plant diversity,” in Encyclopaedia of Biodiversity, vol. 5, pp. 13–23, Academic Press, San Diego, Calif, USA, 2001.
[31]  J. M. Kirika, K. Bhning-Gaese, B. Dumbo, and N. Farwig, “Reduced abundance of late-successional trees but not of seedlings in heavily compared with lightly logged sites of three East African tropical forests,” Journal of Tropical Ecology, vol. 26, no. 5, pp. 533–546, 2010.
[32]  J. H. Connell, “Some processes affecting the species composition in forest gaps,” Ecology, vol. 70, pp. 560–562, 1989.
[33]  J. W. Dalling, H. C. Muller-Landau, S. J. Wright, and S. P. Hubbell, “Role of dispersal in the recruitment limitation of neotropical pioneer species,” Journal of Ecology, vol. 90, no. 4, pp. 714–727, 2002.
[34]  G. Eilu, D. L. N. Hafashimana, and J. M. Kasenene, “Tree species distribution in forests of the Albertine Rift, western Uganda,” African Journal of Ecology, vol. 42, no. 2, pp. 100–110, 2004.
[35]  M. J. Lawes and C. A. Chapman, “Does the herb Acanthus pubescens and/or elephants suppress tree regeneration in disturbed Afrotropical forest?” Forest Ecology and Management, vol. 221, no. 1–3, pp. 278–284, 2006.
[36]  J. G. Agea, J. Obua, S. Namirembe, and M. Buyinza, “Ecology and conservation of Acacia senegal in the rangelands of Luwero and Nakasongola districts, Uganda,” Journal of Agricultural Sciences, vol. 11, pp. 40–46, 2005.
[37]  K. Schreckenberg, “Products of a managed landscape: non-timber forest products in the parklands of the Bassila region, Benin,” Global Ecology and Biogeography, vol. 8, no. 3-4, pp. 279–289, 1999.
[38]  J. L. Camargo and V. Kapos, “Complex edge effects on soil moisture and microclimate in central Amazonian forest,” Journal of Tropical Ecology, vol. 11, no. 2, pp. 205–221, 1995.
[39]  S. Muthuramkumar and N. Parthasarathy, “Alpha diversity of lianas in a tropical evergreen forest in the Anamalais, Western Ghats, India,” Diversity and Distributions, vol. 6, no. 1, pp. 1–14, 2000.
[40]  G. Eilu, J. Oriekot, and H. Tushabe, “Conservation of indigenous plants outside protected areas in Tororo District, eastern Uganda,” African Journal of Ecology, vol. 45, supplement 3, pp. 73–78, 2007.
[41]  A. M. Lykke, “Assessment of species composition change in savanna vegetation by means of woody plants' size class distributions and local information,” Biodiversity and Conservation, vol. 7, no. 10, pp. 1261–1275, 1998.
[42]  P. Hall and K. Bawa, “Methods to assess the impact of extraction of non-timber tropical forest products on plant populations,” Economic Botany, vol. 47, no. 3, pp. 234–247, 1993.
[43]  D. S. Chauhan, C. S. Dhanai, B. Singh, S. Chauhan, N. P. Todaria, and M. A. Khalid, “Regeneration and tree diversity in natural and planted forests in a terai—Bhabhar forest in katarniaghat wildlife sanctuary, India,” Tropical Ecology, vol. 49, no. 1, pp. 53–67, 2008.
[44]  D. Hoekstra and M. Djinide, “Agroforestry potentials for land use system on the Bimodal Highlands of Eastern Africa,” Uganda No.4. RELMA, p. 98, Nairobi, Kenya, 1988.
[45]  A. B. Katende, A. Birnie, and Bo-Tengn?s, Useful Trees and Shrubs for Uganda. Identification, Management for Agricultural and Pastoral Communities, Regional Conservation Unit, Nairobi, Kenya, 1995a.
[46]  A. B. Katende, A. Birnie, and Bo-Tengn?s, Wild Food Plants and Mushrooms of Uganda. Identification, Management for Agricultural and Pastoral Communities, Regional Conservation Unit, Nairobi, Kenya, 1995b.
[47]  G. Eilu, J. Obua, J. K. Tumuhairwe, and C. Nkwine, “Traditional farming and plant species diversity in agricultural landscapes of south-western Uganda,” Agriculture, Ecosystems and Environment, vol. 99, no. 1–3, pp. 125–134, 2003.
[48]  P. Okiror, J. G. Agea, C. A. Okia, and J. B. L. Okullo, “On-farm management of Vitellaria paradoxa C.F. Gaertn. In Amuria District, Eastern Uganda,” International Journal of Forestry Research, vol. 2012, Article ID 768946, 8 pages, 2012.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133