全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
ISRN Forestry  2013 

Spatial Dispersal of Douglas-Fir Beetle Populations in Colorado and Wyoming

DOI: 10.1155/2013/542380

Full-Text   Cite this paper   Add to My Lib

Abstract:

Bark beetles (Coleoptera: Curculionidae: Scolytinae) are mortality agents to multiple tree species throughout North America. Understanding spatiotemporal dynamics of these insects can assist management, prediction of outbreaks, and development of “real time” assessments of forest susceptibility incorporating insect population data. Here, dispersal of Douglas-fir beetle (Dendroctonus pseudotsugae Hopk.) is estimated over four regions within Colorado and Wyoming from 1994 to 2010. Infestations mapped from aerial insect surveys are utilized as a proxy variable for Douglas-fir beetle (DFB) activity and analyzed via a novel GIS technique that co-locates infestations from adjacent years quantifying distances between them. Dispersal distances of DFB infestations were modeled with a cumulative Gaussian function and expressed as a standard dispersal distance (SDD), the distance at which 68% of infestations dispersed in a given flight season. Average values of SDD ranged from under 1?kilometer for the region of northwestern Colorado to over 2.5?kilometers for infestations in Wyoming. A statistically significant relationship was detected between SDD and infestation area in the parent year, suggesting that host depletion and density-dependent factors may influence dispersal. Findings can potentially provide insight for managers—namely, likelihood of DFB infestation increase for locations within two to five kilometers of an existing infestation. 1. Introduction The Douglas-fir beetle, Dendroctonus pseudotsugae Hopkins, (DFB hereafter) is a major mortality agent of Douglas-fir, Pseudotsuga menziesii (Mirbel) Franco, across the Western United States [1, 2]. As a native insect and a natural disturbance agent, it is always present as an endemic influence, playing an important ecological role by killing diseased or otherwise stressed trees. DFB exhibits one generation per year and attacks new hosts every year during its dispersal flight from early spring and through the summer depending on geographic location. The insect overwinters primarily in the adult stage and as larvae inside the host tree [2]. Population levels increase periodically, resulting in widespread tree mortality [3] which can impact management resource objectives and ecosystem services. These eruptive populations usually develop after other disturbances such as fire [4], windstorms [5], or defoliation [6] events which provide an abundance of stressed trees that the insect can exploit. Once stressed trees are no longer a suitable resource, populations can disperse into surrounding stands, where the insect

References

[1]  R. L. Furniss and V. M. Carolin, “Western Forest Insects,” Tech. Rep. 1339, U.S. Department of Agriculture, Forest Service, Miscellaneous Publication, 1977.
[2]  R. F. Schmitz and K. E. Gibson, Douglas-Fir Beetle, Forest Insect and Disease Leaflet 5, USDA Forest Service, Washington, DC, USA, 1996.
[3]  M. M. Furniss, M. D. McGregor, M. W. Foiles, and A. D. Partridge, “Chronology and characteristics of a Douglas-fir beetle outbreak in northern Idaho,” General Technical Report LNT-GTR 59, USDA Forest Service, Intermountain Forest and Range Experiment Station, Ogden, Utah, USA, 1979.
[4]  M. M. Furniss, “Susceptibility of fire-injured Douglas-fir to bark beetle attack in southern Idaho,” Journal of Forestry, vol. 63, no. 1, pp. 8–11, 1965.
[5]  J. A. Rudinsky, “Host selection and invasion by the Douglas-fir beetle, Dendroctonus pseudotsugae Hopkins, in coastal Douglas-fir forests,” Canadian Entomologist, vol. 98, no. 1, pp. 98–111, 1966.
[6]  L. C. Wright, A. A. Berryman, and B. E. Wickman, “Abundance of the fir engraver, Scolytus íentralis, and the Douglas-fir beetle, Dendroctonus pseudotsugae, following tree defoliation by the Douglas-fir tussock moth, Orgyia pseudotsugata,” Canadian Entomologist, vol. 116, no. 3, pp. 293–305, 1984.
[7]  M. M. Furniss, R. L. Livingston, and M. D. McGregor, “Development of a stand susceptibility classification for Douglas-fir beetle,” in Hazard-Rating Systems in Forest Insect Pest Management: Symposium Proceedings, R. L. Hedden, S. J. Barras, and J. E. Coster, Eds., USDA Forest Service, Washington, DC, USA, General Technical Report, no. WO-27, pp. 115–128, Society of American Foresters, Entomology Working Group, and USDA Forest Service, and The University of Georgia, Department of Entomology, 1981.
[8]  J. F. Negron, “Probability of infestation and extent of mortality associated with the Douglas-fir beetle in the Colorado Front Range,” Forest Ecology and Management, vol. 107, no. 1–3, pp. 71–85, 1998.
[9]  J. F. Negron, W. C. Schaupp Jr., K. E. Gibson et al., “Estimating extent of mortality associated with the douglas-fir beetle in the central and northern rockies,” Western Journal of Applied Forestry, vol. 14, no. 3, pp. 121–127, 1999.
[10]  T. L. Shore and L. Safranyik, “Susceptibility and risk rating systems for the mountain pine beetle in lodgepole pine stands,” Forestry Canada, Pacific and Yukon Region, Victoria, BC, Canada, Information Report BC-X-336, 1992.
[11]  J. S. Powers, P. Sollins, M. E. Harmon, and J. A. Jones, “Plant-pest interactions in time and space: a Douglas-fir bark beetle outbreak as a case study,” Landscape Ecology, vol. 14, no. 2, pp. 105–120, 1999.
[12]  T. McConnell, E. Johnson, and B. Burns, “A guide to conducting aerial sketchmapping surveys,” USDA Forest Service, Forest Health Technology Enterprise Team, Fort Collins, CO, Report FHTET 00-01, 2000.
[13]  W. V. Ciesla, “Aerial signatures of forest insect and disease damage in the Western United States,” USDA Forest Service, Forest Health Technology Enterprise Team, Fort Collins, CO, Report 01-06, 2006.
[14]  K. J. Dodds, S. L. Garman, and D. W. Ross, “Landscape analyses of Douglas-fir beetle populations in northern Idaho,” Forest Ecology and Management, vol. 231, no. 1–3, pp. 119–130, 2006.
[15]  E. W. Johnson and D. Wittwer, “Aerial detection surveys in the United States,” Australian Forestry, vol. 71, no. 3, pp. 212–215, 2008.
[16]  E. W. Johnson and J. Ross, “Quantifying error in aerial survey data,” Australian Forestry, vol. 71, no. 3, pp. 216–222, 2008.
[17]  M. A. Wulder, C. C. Dymond, J. C. White, D. G. Leckie, and A. L. Carroll, “Surveying mountain pine beetle damage of forests: a review of remote sensing opportunities,” Forest Ecology and Management, vol. 221, no. 1–3, pp. 27–41, 2006.
[18]  D. M. Theobald, GIS Concepts and ArcGIS Methods, Conservation Planning Technologies, Fort Collins, Colo, USA, 1st edition, 2003.
[19]  N. D. Le and J. V. Zidek, Statistical Analysis of Environmental Space-Time Processes (Springer Series in Statistics), Springer, New York, NY, USA, 1st edition, 2006.
[20]  W. W. Daniel, Applied Nonparametric Statistics, PWS-KENT Publishing Company, Boston, Mass, USA, 2nd edition, 1990.
[21]  M. Abramowitz and I. A. Stegun, Eds., Handbook of Mathematical Functions With Formulas, Graphs, and Mathematical Tables, Dover Publications, New York, NY, USA, 1972.
[22]  R. L. Ott, An Introduction To Statistical Methods and Data Analysis, Duxbury Press, Belmont, Calif, USA, 4th edition, 1993.
[23]  T. Ormsby, E. Napoleon, R. Burke, C. Groessl, and L. Feaster, Getting to Know ArcGIS Desktop: Basics of ArcView, ArcEditor, and ArcInfo, ESRI Press, Redlands, Calif, USA, 2001.
[24]  S. A. S. Institute, SAS/STAT 9. 1 USer'S Guide, SAS Institute, Cary, NC, USA, 2004.
[25]  R Development Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, 2010, http://www.r-project.org/.
[26]  J. A. Byers, “Wind-aided dispersal of simulated bark beetles flying through forests,” Ecological Modelling, vol. 125, no. 2-3, pp. 231–243, 2000.
[27]  J. A. Chapman, “Flight of Dendroctonus pseudotsugae in the laboratory,” Bi-Monthly Progress Report 10, Canada Department of Agriculture, Division of Forest Biology, 1954.
[28]  H. J. Barclay, T. Schivatcheva, C. Li, and L. Benson, “Effects of fire return rates on traversability of lodgepole pine forests for mountain pine beetle: implications for sustainable forest management,” British Columbia Journal of Ecosystems and Management, vol. 10, no. 2, pp. 115–122, 2009.
[29]  K. Kausrud, B. ?kland, O. Skarpaas, J. C Grégoire, N. Erbilgin, and N. C. Stenseth, “Population dynamics in changing environments: the case of an eruptive forest pest species,” Biological Reviews, vol. 87, no. 1, pp. 34–51, 2012.
[30]  D. M. Johnson, O. N. Bj?rnstad, and A. M. Liebhold, “Landscape mosaic induces traveling waves of insect outbreaks,” Oecologia, vol. 148, no. 1, pp. 51–60, 2006.
[31]  J. Hof and M. Bevers, Spatial Optimization For Managed Ecosystems, Complexity in Ecological Systems Series, Columbia University Press, New York, NY, USA, 1998.
[32]  R. N. Coulson and J. A. Witter, Forest Entomology: Ecology and Management, John Wiley and Sons, New York, NY, USA, 1984.
[33]  P. Aplin, “On scales and dynamics in observing the environment,” International Journal of Remote Sensing, vol. 27, no. 11, pp. 2123–2140, 2006.
[34]  J. F. Negrón, J. A. Anhold, and A. S. Munson, “Within-stand spatial distribution of tree mortality caused by the douglas-fir beetle (coleoptera: Scolytidae),” Environmental Entomology, vol. 30, no. 2, pp. 215–224, 2001.
[35]  A. M. Liebhold, X. Zhang, M. E. Hohn et al., “Geostatistical analysis of gypsy moth (Lepidoperta: Lymantriidae) egg mass populations,” Environmental Entomology, vol. 20, no. 5, pp. 1407–1417, 1991.
[36]  N. D. Le and J. V. Zidek, Statistical Analysis of Environmental Space-Time Processes, Series in Statistics, Springer, New York, NY, USA, 2006.
[37]  P. Cízek, W. H?rdle, and J. Symanzik, “Spatial statistics,” in Statistical Methods For Biostatistics and Related Fields, W. H?rdle, Y. Mori, and P. Vieu, Eds., Springer, New York, NY, USA, 2007.
[38]  K. M. Holbrook and T. B. Smith, “Seed dispersal and movement patterns in two species of Ceratogymna hornbills in a West African tropical lowland forest,” Oecologia, vol. 125, no. 2, pp. 249–257, 2000.
[39]  R. Kitching, “A simple simulation model of dispersal of animals among units of discrete habitats,” Oecologia, vol. 7, no. 2, pp. 95–116, 1971.
[40]  A. Papoulis, Probability, Random Variables, and Stochastic Processes, McGraw-Hill, New York, NY, USA, 2nd edition, 1984.
[41]  B. Schr?der and R. Seppelt, “Analysis of pattern-process interactions based on landscape models-Overview, general concepts, and methodological issues,” Ecological Modelling, vol. 199, no. 4, pp. 505–516, 2006.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133