全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

The Modern Primitives: Applying New Technological Approaches to Explore the Biology of the Earliest Red Blood Cells

DOI: 10.1155/2013/568928

Full-Text   Cite this paper   Add to My Lib

Abstract:

One of the most critical stages in mammalian embryogenesis is the independent production of the embryo's own circulating, functional red blood cells. Correspondingly, erythrocytes are the first cell type to become functionally mature during embryogenesis. Failure to achieve this invariably leads to in utero lethality. The recent application of technologies such as transcriptome analysis, flow cytometry, mutant embryo analysis, and transgenic fluorescent gene expression reporter systems has shed new light on the distinct erythroid lineages that arise early in development. Here, I will describe the similarities and differences between the distinct erythroid populations that must form for the embryo to survive. While much of the focus of this review will be the poorly understood primitive erythroid lineage, a discussion of other erythroid and hematopoietic lineages, as well as the cell types making up the different niches that give rise to these lineages, is essential for presenting an appropriate developmental context of these cells. 1. Historical Backdrop Early in the 1900s, advances in microscopy and histology lead to a golden era of investigation into the processes regulating embryonic blood production. Pioneers such as Maximov, Sabin, and Jordan published a series of monographs describing blood cell production in the vertebrate embryo [1–3]. Much attention was focused on the unusually intimate relationship between developing endothelial cells and hematopoietic cells with the term hemogenic endothelium appearing at this time (reviewed in [4]). A distinct population of erythroid cells was identified and categorized as “megaloblasts”. These nucleated cells appeared to carry hemoglobin but were larger than the conventional anuclear red blood cells observed in the adult. These cells were first detected in the extra-embryonic yolk sac. Due to these characteristics, as well as their similarities to nonmammalian vertebrate erythrocytes, these cells were termed primitive erythroid cells [1] (which is often abbreviated to EryP). The distinctions between EryP and adult-type definitive erythroid cells (EryD) is the main focus of this review. The epithet “primitive” has proven to be somewhat distracting as hematopoietic stem cells with extensive self-renewing potential are also often referred to as being “primitive”. This review is focused on the primitive erythroid lineage originating in the yolk sac. This task however cannot be performed in isolation, and as such other blood cells and hematopoietic tissues will be discussed. 2. The Anatomy of Embryonic Blood

References

[1]  A. M. Maximow, “Der Lymphozyt als gemeinsame Stammzelle der verschiedenen Blutelemente in der embryonalen Entwicklung und im postfetalen Leben der S?ugetiere,” Folia Haematologica, no. 8, pp. 125–134, 1909.
[2]  H. E. Jordan, “Evidence of hemogenic capacity of endothelium,” The Anatomical Record, vol. 10, no. 5, pp. 417–420, 1916.
[3]  F. R. Sabin, “Preliminary note on the differentiation of angioblasts and the method by which they produce blood-vessels, blood-plasma and red blood-cells as seen in the living chick,” The Anatomical Record, vol. 13, no. 4, pp. 199–204, 1917.
[4]  V. I. Antas, M. A. Al-Drees, A. J. A. Prudence, D. Sugiyama, and S. T. Fraser, “Hemogenic endothelium: a vessel for blood production,” International Journal of Biochemistry and Cell Biology, pp. 1–5, 2013.
[5]  K. M. Downs, “The enigmatic primitive streak: prevailing notions and challenges concerning the body axis of mammals,” BioEssays, vol. 31, no. 8, pp. 892–902, 2009.
[6]  S. T. Fraser and M. H. Baron, “Embryonic fates for extraembryonic lineages: new perspectives,” Journal of Cellular Biochemistry, vol. 107, no. 4, pp. 586–591, 2009.
[7]  J. Isern, S. T. Fraser, Z. He, and M. H. Baron, “Developmental niches for embryonic erythroid cells,” Blood Cells, Molecules, and Diseases, vol. 44, no. 4, pp. 207–208, 2010.
[8]  M. H. Baron, J. Isern, and S. T. Fraser, “The embryonic origins of erythropoiesis in mammals,” Blood, vol. 119, no. 21, pp. 4828–4837, 2012.
[9]  A. Medvinsky, S. Rybtsov, and S. Taoudi, “Embryonic origin of the adult hematopoietic system: advances and questions,” Development, vol. 138, no. 6, pp. 1017–1031, 2011.
[10]  J. Palis, K. E. McGrath, and P. D. Kingsley, “Initiation of hematopoiesis and vasculogenesis in murine yolk sac explants,” Blood, vol. 86, no. 1, pp. 156–163, 1995.
[11]  J. L. Haar and G. A. Ackerman, “A phase and electron microscopic study of vasculogenesis and erythropoiesis in the yolk sac of the mouse,” The Anatomical Record, vol. 170, no. 2, pp. 199–223, 1971.
[12]  J. L. Haar and G. A. Ackerman, “Ultrastructural changes in mouse yolk sac associated with the initiation of vitelline circulation,” The Anatomical Record, vol. 170, no. 4, pp. 437–455, 1971.
[13]  M. J. Ferkowicz, M. Starr, X. Xie et al., “CD41 expression defines the onset of primitive and definitive hematopoiesis in the murine embryo,” Development, vol. 130, no. 18, pp. 4393–4403, 2003.
[14]  J. Isern, Z. He, S. T. Fraser et al., “Single-lineage transcriptome analysis reveals key regulatory pathways in primitive erythroid progenitors in the mouse embryo,” Blood, vol. 117, no. 18, pp. 4924–4934, 2011.
[15]  A. M. Vacaru, J. Isern, S. T. Fraser, and M. H. Baron, “Analysis of primitive erythroid cell proliferation and enucleation using a cyan fluorescent reporter in transgenic mice,” Genesis, 2013.
[16]  S. T. Fraser, M. Ogawa, R. T. Yu, S. Nishikawa, M. C. Yoder, and S.-I. Nishikawa, “Definitive hematopoietic commitment within the embryonic vascular endothelial-cadherin+ population,” Experimental Hematology, vol. 30, no. 9, pp. 1070–1078, 2002.
[17]  M. C. Yoder, K. Hiatt, P. Dutt, P. Mukherjee, D. M. Bodine, and D. Orlic, “Characterization of definitive lymphohematopoietic stem cells in the day 9 murine yolk sac,” Immunity, vol. 7, no. 3, pp. 335–344, 1997.
[18]  J. Palis, S. Robertson, M. Kennedy, C. Wall, and G. Keller, “Development of erythroid and myeloid progenitors in the yolk sac and embryo proper of the mouse,” Development, vol. 126, no. 22, pp. 5073–5084, 1999.
[19]  K. E. Inman and K. M. Downs, “The murine allantois: emerging paradigms in development of the mammalian umbilical cord and its relation to the fetus,” Genesis, vol. 45, no. 5, pp. 237–258, 2007.
[20]  B. M. Zeigler, D. Sugiyama, M. Chen, Y. Guo, K. M. Downs, and N. A. Speck, “The allantois and chorion, when isolated before circulation or chorio-allantoic fusion, have hematopoietic potential,” Development, vol. 133, no. 21, pp. 4183–4192, 2006.
[21]  C. Gekas, F. Dieterlen-Lièvre, S. H. Orkin, and H. K. A. Mikkola, “The placenta is a niche for hematopoietic stem cells,” Developmental Cell, vol. 8, no. 3, pp. 365–375, 2005.
[22]  C. Robin, K. Bollerot, S. Mendes et al., “Human placenta is a potent hematopoietic niche containing hematopoietic stem and progenitor cells throughout development,” Cell Stem Cell, vol. 5, no. 4, pp. 385–395, 2009.
[23]  B. van Handel, S. L. Prashad, N. Hassanzadeh-Kiabi et al., “The first trimester human placenta is a site for terminal maturation of primitive erythroid cells,” Blood, vol. 116, no. 17, pp. 3321–3330, 2010.
[24]  M. F. T. R. di Bruijn, N. A. Speck, M. C. E. Peeters, and E. Dzierzak, “Definitive hematopoietic stem cells first develop within the major arterial regions of the mouse embryo,” EMBO Journal, vol. 19, no. 11, pp. 2465–2474, 2000.
[25]  J.-C. Boisset, W. van Cappellen, C. Andrieu-Soler, N. Galjart, E. Dzierzak, and C. Robin, “In vivo imaging of haematopoietic cells emerging from the mouse aortic endothelium,” Nature, vol. 464, no. 7285, pp. 116–120, 2010.
[26]  P. D. Kingsley, J. Malik, K. A. Fantauzzo, and J. Palis, “Yolk sac-derived primitive erythroblasts enucleate during mammalian embryogenesis,” Blood, vol. 104, no. 1, pp. 19–25, 2004.
[27]  K. S. Zaret and M. Grompe, “Generation and regeneration of cells of the liver and pancreas,” Science, vol. 322, no. 5907, pp. 1490–1494, 2008.
[28]  J. Isern, S. T. Fraser, Z. He, and M. H. Baron, “The fetal liver is a niche for maturation of primitive erythroid cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 18, pp. 6662–6667, 2008.
[29]  A. S. Tsiftsoglou, I. S. Vizirianakis, and J. Strouboulis, “Erythropoiesis: model systems, molecular regulators, and developmental programs,” IUBMB Life, vol. 61, no. 8, pp. 800–830, 2009.
[30]  K. E. McGrath and J. Palis, “Hematopoiesis in the yolk sac: more than meets the eye,” Experimental Hematology, vol. 33, no. 9, pp. 1021–1028, 2005.
[31]  S. J. England, K. E. McGrath, J. M. Frame, and J. Palis, “Immature erythroblasts with extensive ex vivo self-renewal capacity emerge from the early mammalian fetus,” Blood, vol. 117, no. 9, pp. 2708–2717, 2011.
[32]  K. E. McGrath, J. M. Frame, G. J. Fromm et al., “A transient definitive erythroid lineage with unique regulation of the β-globin locus in the mammalian embryo,” Blood, vol. 117, no. 17, pp. 4600–4608, 2011.
[33]  R. F. Paulson, L. Shi, and D.-C. Wu, “Stress erythropoiesis: new signals and new stress progenitor cells,” Current Opinion in Hematology, vol. 18, no. 3, pp. 139–145, 2011.
[34]  M. Socolovsky, “Molecular insights into stress erythropoiesis,” Current Opinion in Hematology, vol. 14, no. 3, pp. 215–224, 2007.
[35]  P. M. C. Wong, S.-W. Chung, S. M. Reicheld, and D. H. K. Chui, “Hemoglobin switching during murine embryonic development: evidence for two populations of embryonic erythropoietic progenitor cells,” Blood, vol. 67, no. 3, pp. 716–721, 1986.
[36]  K. Morioka and R. Minamikawa-Tachino, “Terminal differentiation of yolk-sac erythroid cells of the Syrian hamster in vitro,” Roux's Archives of Developmental Biology, vol. 200, no. 2, pp. 86–94, 1991.
[37]  G. Keller, “Embryonic stem cell differentiation: emergence of a new era in biology and medicine,” Genes and Development, vol. 19, no. 10, pp. 1129–1155, 2005.
[38]  S. T. Fraser, M. Ogawa, S. Nishikawa, and S.-I. Nishikawa, “Embryonic stem cell differentiation as a model to study hematopoietic and endothelial cell development,” Methods in Molecular Biology, vol. 185, pp. 71–81, 2002.
[39]  J. Yamashita, H. Itoh, M. Hirashima et al., “Flk1-positive cells derived from embryonic stem cells serve as vascular progenitors,” Nature, vol. 408, no. 6808, pp. 92–96, 2000.
[40]  M. V. Wiles and G. Keller, “Multiple hematopoietic lineages develop from embryonic stem (ES) cells in culture,” Development, vol. 111, no. 2, pp. 259–267, 1991.
[41]  K. Choi, M. Kennedy, A. Kazarov, J. C. Papadimitriou, and G. Keller, “A common precursor for hematopoietic and endothelial cells,” Development, vol. 125, no. 4, pp. 725–732, 1998.
[42]  S.-I. Nishikawa, S. Nishikawa, M. Hirashima, N. Matsuyoshi, and H. Kodama, “Progressive lineage analysis by cell sorting and culture identifies FLK1+VE-cadherin+ cells at a diverging point of endothelial and hemopoietic lineages,” Development, vol. 125, no. 9, pp. 1747–1757, 1998.
[43]  R. Darabi, K. Gehlbach, R. M. Bachoo et al., “Functional skeletal muscle regeneration from differentiating embryonic stem cells,” Nature Medicine, vol. 14, no. 2, pp. 134–143, 2008.
[44]  M. C. Nostro, X. Cheng, G. M. Keller, and P. Gadue, “Wnt, activin, and BMP signaling regulate distinct stages in the developmental pathway from embryonic stem cells to blood,” Cell Stem Cell, vol. 2, no. 1, pp. 60–71, 2008.
[45]  P. Gadue, T. L. Huber, M. C. Nostro, S. Kattman, and G. M. Keller, “Germ layer induction from embryonic stem cells,” Experimental Hematology, vol. 33, no. 9, pp. 955–964, 2005.
[46]  S.-I. Nishikawa, S. Nishikawa, H. Kawamoto et al., “In vitro generation of lymphohematopoietic cells from endothelial cells purified from murine embryos,” Immunity, vol. 8, no. 6, pp. 761–769, 1998.
[47]  N. Kabrun, H.-J. Bühring, K. Choi, A. Ullrich, W. Risau, and G. Keller, “Flk-1 expression defines a population of early embryonic hematopoietic precursors,” Development, vol. 124, no. 10, pp. 2039–2048, 1997.
[48]  M. Kennedy, M. Firpo, K. Choi et al., “A common precursor for primitive erythropoiesis and definitive haematopoiesis,” Nature, vol. 386, no. 6624, pp. 488–493, 1997.
[49]  V. Kouskoff, G. Lacaud, S. Schwantz, H. J. Fehling, and G. Keller, “Sequential development of hematopoietic and cardiac mesoderm during embryonic stem cell differentiation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 37, pp. 13170–13175, 2005.
[50]  T. L. Huber, V. Kouskoff, H. J. Fehling, J. Palis, and G. Keller, “Haemangioblast commitment is initiated in the primitive streak of the mouse embryo,” Nature, vol. 432, no. 7017, pp. 625–630, 2004.
[51]  C. Lancrin, P. Sroczynska, C. Stephenson, T. Allen, V. Kouskoff, and G. Lacaud, “The haemangioblast generates haematopoietic cells through a haemogenic endothelium stage,” Nature, vol. 457, no. 7231, pp. 892–895, 2009.
[52]  S. Irion, R. L. Clarke, H. Luche et al., “Temporal specification of blood progenitors from mouse embryonic stem cells and induced pluripotent stem cells,” Development, vol. 137, no. 17, pp. 2829–2839, 2010.
[53]  F. Li, S. Lu, L. Vida, J. A. Thomson, and G. R. Honig, “Bone morphogenetic protein 4 induces efficient hematopoietic differentiation of rhesus monkey embryonic stem cells in vitro,” Blood, vol. 98, no. 2, pp. 335–342, 2001.
[54]  S.-J. Lu, F. Li, L. Vida, and G. R. Honig, “CD34+CD38? hematopoietic precursors derived from human embryonic stem cells exhibit an embryonic gene expression pattern,” Blood, vol. 103, no. 11, pp. 4134–4141, 2004.
[55]  C. Qiu, E. N. Olivier, M. Velho, and E. E. Bouhassira, “Globin switches in yolk sac-like primitive and fetal-like definitive red blood cells produced from human embryonic stem cells,” Blood, vol. 111, no. 4, pp. 2400–2408, 2008.
[56]  E. N. Olivier, C. Qiu, M. Velho, R. E. Hirsch, and E. E. Bouhassira, “Large-scale production of embryonic red blood cells from human embryonic stem cells,” Experimental Hematology, vol. 34, no. 12, pp. 1635–1642, 2006.
[57]  D. Yuen, L. Mittal, C.-X. Deng, and K. Choi, “Generation of a primitive erythroid cell line and promotion of its growth by basic fibroblast growth factor,” Blood, vol. 91, no. 9, pp. 3202–3209, 1998.
[58]  G. Keller, C. Wall, A. Z. C. Fong, T. S. Hawley, and R. G. Hawley, “Overexpression of HOX11 leads to the immortalization of embryonic precursors with both primitive and definitive hematopoietic potential,” Blood, vol. 92, no. 3, pp. 877–887, 1998.
[59]  S. T. Fraser, J. Isern, and M. H. Baron, “Use of transgenic fluorescent reporter mouse lines to monitor hematopoietic and erythroid development during embryogenesis,” Methods in Enzymology, vol. 476, pp. 403–427, 2010.
[60]  L. C. Redmond, J. L. Haar, M. L. Giebel et al., “Isolation of erythroid cells from the mouse embryonic yolk sac by laser capture microdissection and subsequent microarray hybridization,” Blood Cells, Molecules, and Diseases, vol. 37, no. 1, pp. 27–32, 2006.
[61]  L. C. Redmond, C. I. Dumur, K. J. Archer, J. L. Haar, and J. A. Lloyd, “Identification of erythroid-enriched gene expression in the mouse embryonic yolk sac using microdissected cells,” Developmental Dynamics, vol. 237, no. 2, pp. 436–446, 2008.
[62]  T. Kina, K. Ikuta, E. Takayama et al., “The monoclonal antibody TER-119 recognizes a molecule associated with glycophorin A and specifically marks the late stages of murine erythroid lineage,” British Journal of Haematology, vol. 109, no. 2, pp. 280–287, 2000.
[63]  G. Lee, A. Lo, S. A. Short et al., “Targeted gene deletion demonstrates that the cell adhesion molecule ICAM-4 is critical for erythroblastic island formation,” Blood, vol. 108, no. 6, pp. 2064–2071, 2006.
[64]  S. T. Fraser, J. Isern, and M. H. Baron, “Maturation and enucleation of primitive erythroblasts during mouse embryogenesis is accompanied by changes in cell-surface antigen expression,” Blood, vol. 109, no. 1, pp. 343–352, 2007.
[65]  P. D. Kingsley, J. Malik, R. L. Emerson et al., “‘Maturational’ globin switching in primary primitive erythroid cells,” Blood, vol. 107, no. 4, pp. 1665–1672, 2006.
[66]  P. D. Kingsley, E. Greenfest-Allen, J. M. Frame, et al., “Ontogeny of erythroid gene expression,” Blood, vol. 121, no. 6, pp. e5–e13, 2012.
[67]  M. Belaoussoff, S. M. Farrington, and M. H. Baron, “Hematopoietic induction and respecification of A-P identity by visceral endoderm signaling in the mouse embryo,” Development, vol. 125, no. 24, pp. 5009–5018, 1998.
[68]  W. L. Trepicchio, M. A. Dyer, and M. H. Baron, “Developmental regulation of the human embryonic β-like globin gene is mediated by synergistic interactions among multiple tissue- and stage-specific elements,” Molecular and Cellular Biology, vol. 13, no. 12, pp. 7457–7468, 1993.
[69]  W. L. Trepicchio, M. A. Dyer, and M. H. Baron, “A novel developmental regulatory motif required for stage-specific activation of the epsilon-globin gene and nuclear factor binding in embryonic erythroid cells,” Molecular and Cellular Biology, vol. 14, no. 6, pp. 3763–3771, 1994.
[70]  W. L. Trepicchio, M. A. Dyer, R. C. Hardison, and M. H. Baron, “Upstream regulatory region of the human embryonic beta-like globin gene, epsilon,” DNA Sequence, vol. 4, no. 6, pp. 409–412, 1994.
[71]  M. A. Dyer, S. M. Farrington, D. Mohn, J. R. Munday, and M. H. Baron, “Indian hedgehog activates hematopoiesis and vasculogenesis and can respecify prospective neurectodermal cell fate in the mouse embryo,” Development, vol. 128, no. 10, pp. 1717–1730, 2001.
[72]  E. A. V. Jones, D. Crotty, P. M. Kulesa et al., “Dynamic in vivo imaging of postimplantation mammalian embryos using whole embryo culture,” Genesis, vol. 34, no. 4, pp. 228–235, 2002.
[73]  E. A. V. Jones, M. H. Baron, S. E. Fraser, and M. E. Dickinson, “Measuring hemodynamic changes during mammalian development,” American Journal of Physiology: Heart and Circulatory Physiology, vol. 287, no. 4, pp. H1561–H1569, 2004.
[74]  A.-K. Hadjantonakis and V. E. Papaioannou, “Dynamic in vivo imaging and cell tracking using a histone fluorescent protein fusion in mice,” BMC Biotechnology, vol. 4, article 33, 2004.
[75]  S. T. Fraser, A.-K. Hadjantonakis, K. E. Sahr et al., “Using a histone yellow fluorescent protein fusion for tagging and tracking endothelial cells in ES cells and mice,” Genesis, vol. 42, no. 3, pp. 162–171, 2005.
[76]  R. P. Davis, E. S. Ng, M. Costa et al., “Targeting a GFP reporter gene to the MIXL1 locus of human embryonic stem cells identifies human primitive streak-like cells and enables isolation of primitive hematopoietic precursors,” Blood, vol. 111, no. 4, pp. 1876–1884, 2008.
[77]  S. Willey, A. Ayuso-Sacido, H. Zhang et al., “Acceleration of mesoderm development and expansion of hematopoietic progenitors in differentiating ES cells by the mouse Mix-like homeodomain transcription factor,” Blood, vol. 107, no. 8, pp. 3122–3130, 2006.
[78]  R. Ferreira, K. Ohneda, M. Yamamoto, and S. Philipsen, “GATA1 function, a paradigm for transcription factors in hematopoiesis,” Molecular and Cellular Biology, vol. 25, no. 4, pp. 1215–1227, 2005.
[79]  T. Yokomizo, S. Takahashi, N. Mochizuki et al., “Characterization of GATA-1+ hemangioblastic cells in the mouse embryo,” EMBO Journal, vol. 26, no. 1, pp. 184–196, 2007.
[80]  T. Fujimoto, M. Ogawa, N. Minegishi et al., “Step-wise divergence of primitive and definitive haematopoietic and endothelial cell lineages during embryonic stem cell differentiation,” Genes to Cells, vol. 6, no. 12, pp. 1113–1127, 2001.
[81]  C. T. Lux, M. Yoshimoto, K. McGrath, S. J. Conway, J. Palis, and M. C. Yoder, “All primitive and definitive hematopoietic progenitor cells emerging before E10 in the mouse embryo are products of the yolk sac,” Blood, vol. 111, no. 7, pp. 3435–3438, 2008.
[82]  J. Tober, K. E. McGrath, and J. Palis, “Primitive erythropoiesis and megakaryopoiesis in the yolk sac are independent of c-myb,” Blood, vol. 111, no. 5, pp. 2636–2639, 2008.
[83]  O. Klimchenko, M. Mori, A. Distefano et al., “A common bipotent progenitor generates the erythroid and megakaryocyte lineages in embryonic stem cell-derived primitive hematopoiesis,” Blood, vol. 114, no. 8, pp. 1506–1517, 2009.
[84]  K. E. McGrath, A. D. Koniski, J. Malik, and J. Palis, “Circulation is established in a stepwise pattern in the mammalian embryo,” Blood, vol. 101, no. 5, pp. 1669–1676, 2003.
[85]  M. Ema, T. Yokomizo, A. Wakamatsu, T. Terunuma, M. Yamamoto, and S. Takahashi, “Primitive erythropoiesis from mesodermal precursors expressing VE-cadherin, PECAM-1, Tie2, endoglin, and CD34 in the mouse embryo,” Blood, vol. 108, no. 13, pp. 4018–4024, 2006.
[86]  F. Shalaby, J. Ho, W. L. Stanford et al., “A requirement for Flk1 in primitive and definitive hematopoiesis and vasculogenesis,” Cell, vol. 89, no. 6, pp. 981–990, 1997.
[87]  J. J. Lugus, C. Park, Y. D. Ma, and K. Choi, “Both primitive and definitive blood cells are derived from Flk-1+ mesoderm,” Blood, vol. 113, no. 3, pp. 563–566, 2009.
[88]  L. Li, J. Y. Lee, J. Gross, S.-H. Song, A. Dean, and P. E. Love, “A requirement for Lim domain binding protein 1 in erythropoiesis,” Journal of Experimental Medicine, vol. 207, no. 12, pp. 2543–2550, 2010.
[89]  T. A. Baudino, C. McKay, H. Pendeville-Samain et al., “c-Myc is essential for vasculogenesis and angiogenesis during development and tumor progression,” Genes and Development, vol. 16, no. 19, pp. 2530–2543, 2002.
[90]  R. R. Shah, A. Koniski, M. Shinde, et al., “Regulation of primitive hematopoiesis by class I histone deacetylases,” Developmental Dynamics, vol. 242, no. 2, pp. 108–121, 2013.
[91]  L. Borges, M. Iacovino, T. Mayerhofer, et al., “A critical role for endoglin in the emergence of blood during embryonic development,” Blood, vol. 119, no. 23, pp. 5417–5428, 2012.
[92]  J. Baik, L. Borges, A. Magli, T. Thatava, and R. C. R. Perlingeiro, “Effect of endoglin overexpression during embryoid body development,” Experimental Hematology, vol. 40, no. 10, pp. 837–846, 2012.
[93]  L. Zhang, A. Magli, J. Catanese, Z. Xu, M. Kyba, and R. C. R. Perlingeiro, “Modulation of TGF-β signaling by endoglin in murine hemangioblast development and primitive hematopoiesis,” Blood, vol. 118, no. 1, pp. 88–97, 2011.
[94]  X. Cheng, T. L. Huber, V. C. Chen, P. Gadue, and G. M. Keller, “Numb mediates the interaction between Wnt and Notch to modulate primitive erythropoietic specification from the hemangioblast,” Development, vol. 135, no. 20, pp. 3447–3458, 2008.
[95]  R. Laranjeiro, I. Alcobia, H. Neves et al., “The notch ligand delta-like 4 regulates multiple stages of early hemato-vascular development,” PLoS ONE, vol. 7, no. 4, Article ID e34553, 2012.
[96]  R. Martin, R. Lahlil, A. Damert et al., “SCL interacts with VEGF to suppress apoptosis at the onset of hematopoiesis,” Development, vol. 131, no. 3, pp. 693–702, 2004.
[97]  B. Drogat, J. Kalucka, L. Gutiérrez et al., “Vegf regulates embryonic erythroid development through Gata1 modulation,” Blood, vol. 116, no. 12, pp. 2141–2151, 2010.
[98]  M. A. McDevitt, J. Xie, G. Shanmugasundaram et al., “A critical role for the host mediator macrophage migration inhibitory factor in the pathogenesis of malarial anemia,” Journal of Experimental Medicine, vol. 203, no. 5, pp. 1185–1196, 2006.
[99]  D. M. Adelman, E. Maltepe, and M. C. Simon, “Multilineage embryonic hematopoiesis requires hypoxic ARNT activity,” Genes and Development, vol. 13, no. 19, pp. 2478–2483, 1999.
[100]  C. M. Sturgeon, L. Chicha, A. Ditadi, et al., “Primitive erythropoiesis is regulated by miR-126 via nonhematopoietic Vcam-1+ cells,” Developmental Cell, vol. 23, no. 1, pp. 45–57, 2012.
[101]  J. Palis, J. Malik, K. E. McGrath, and P. D. Kingsley, “Primitive erythropoiesis in the mammalian embryo,” International Journal of Developmental Biology, vol. 54, no. 6-7, pp. 1011–1018, 2010.
[102]  R. P. Ji, C. K. L. Phoon, O. Aristizábal, K. E. McGrath, J. Palis, and D. H. Turnbull, “Onset of cardiac function during early mouse embryogenesis coincides with entry of primitive erythroblasts into the embryo proper,” Circulation Research, vol. 92, no. 2, pp. 133–135, 2003.
[103]  M. Socolovsky, H.-S. Nam, M. D. Fleming, et al., “Ineffective erythropoiesis in Stat5a?/?5b?/? mice due to decreased survival of early erythroblasts,” Blood, vol. 98, no. 12, pp. 3261–3273, 2001.
[104]  J. Isern, S. T. Fraser, Z. He, H. Zhang, and M. H. Baron, “Dose-dependent regulation of primitive erythroid maturation and identity by the transcription factor Eklf,” Blood, vol. 116, no. 19, pp. 3972–3980, 2010.
[105]  C.-S. Lin, S.-K. Lim, V. D'Agati, and F. Costantini, “Differential effects of an erythropoietin receptor gene disruption on primitive and definitive erytnropoiesis,” Genes and Development, vol. 10, no. 2, pp. 154–164, 1996.
[106]  C. J. Pang, W. Lemsaddek, Y. N. Alhashem, et al., “Kruppel-like factor 1 (KLF1), KLF2, and Myc control a regulatory network essential for embryonic erythropoiesis,” Molecular and Cellular Biology, vol. 32, no. 13, pp. 2628–2644, 2012.
[107]  N. C. Bethlenfalvay and M. Block, “Fetal erythropoiesis,” Acta Haematologica, vol. 44, no. 4, pp. 240–245, 1970.
[108]  A. Fantoni, A. de la Chapelle, R. A. Rifkind, and P. A. Marks, “Erythroid cell development in fetal mice: synthetic capacity for different proteins,” Journal of Molecular Biology, vol. 33, no. 1, pp. 79–91, 1968.
[109]  F. Sangiorgi, C. M. Woods, and E. Lazarides, “Vimentin downregulation is an inherent feature of murine erythropoiesis and occurs independently of lineage,” Development, vol. 110, no. 1, pp. 85–96, 1990.
[110]  C. T. Griffin, J. Brennan, and T. Magnuson, “The chromatin-remodeling enzyme BRG1 plays an essential role in primitive erythropoiesis and vascular development,” Development, vol. 135, no. 3, pp. 493–500, 2008.
[111]  T. Ueda, R. Watanabe-fukunaga, H. Ogawa et al., “Critical role of the p400/mDomino chromatin-remodeling ATPase in embryonic hematopoiesis,” Genes to Cells, vol. 12, no. 5, pp. 581–592, 2007.
[112]  K. Tatsumi, H. Yamamoto-Mukai, R. Shimizu, et al., “The Ufm1-activating enzyme Uba5 is indispensable for erythroid differentiation in mice,” Nature Communications, vol. 2, article 181, 2011.
[113]  C. Cantu, F. Bose, P. Bianchi, et al., “Defective erythroid maturation in gelsolin mutant mice,” Haematologica, vol. 97, no. 7, pp. 980–988, 2012.
[114]  H. Hinssen, J. Vandekerckhove, and E. Lazarides, “Gelsolin is expressed in early erythroid progenitor cells and negatively regulated during erythropoiesis,” The Journal of Cell Biology, vol. 105, no. 3, pp. 1425–1433, 1987.
[115]  X. Chu, J. Chen, M. C. Reedy, C. Vera, K.-L. P. Sung, and L. A. Sung, “E-Tmod capping of actin filaments at the slow-growing end is required to establish mouse embryonic circulation,” American Journal of Physiology: Heart and Circulatory Physiology, vol. 284, no. 5, pp. H1827–H1838, 2003.
[116]  D. Hodge, E. Coghill, J. Keys et al., “A global role for EKLF in definitive and primitive erythropoiesis,” Blood, vol. 107, no. 8, pp. 3359–3370, 2006.
[117]  R. Drissen, M. Von Lindern, A. Kolbus et al., “The erythroid phenotype of EKLF-null mice: defects in hemoglobin metabolism and membrane stability,” Molecular and Cellular Biology, vol. 25, no. 12, pp. 5205–5214, 2005.
[118]  L. C. Redmond, C. I. Dumur, K. J. Archer, D. R. Grayson, J. L. Haar, and J. A. Lloyd, “Krüppel-like factor 2 regulated gene expression in mouse embryonic yolk sac erythroid cells,” Blood Cells, Molecules, and Diseases, vol. 47, no. 1, pp. 1–11, 2011.
[119]  P. Basu, P. E. Morris, J. L. Haar et al., “KLF2 is essential for primitive erythropoiesis and regulates the human and murine embryonic β-like globin genes in vivo,” Blood, vol. 106, no. 7, pp. 2566–2571, 2005.
[120]  P. Basu, T. K. Lung, W. Lemsaddek et al., “EKLF and KLF2 have compensatory roles in embryonic β-globin gene expression and primitive erythropoiesis,” Blood, vol. 110, no. 9, pp. 3417–3425, 2007.
[121]  T. Yokomizo, K. Hasegawa, H. Ishitobi et al., “Runx1 is involved in primitive erythropoiesis in the mouse,” Blood, vol. 111, no. 8, pp. 4075–4080, 2008.
[122]  Y. Fujiwara, C. P. Browne, K. Cunniff, S. C. Goff, and S. H. Orkin, “Arrested development of embryonic red cell precursors in mouse embryos lacking transcription factor GATA-1,” Proceedings of the National Academy of Sciences of the United States of America, vol. 93, no. 22, pp. 12355–12358, 1996.
[123]  Y. Fujiwara, A. N. Chang, A. M. Williams, and S. H. Orkin, “Functional overlap of GATA-1 and GATA-2 in primitive hematopoietic development,” Blood, vol. 103, no. 2, pp. 583–585, 2004.
[124]  S. Hosoya-Ohmura, N. Mochizuki, M. Suzuki, O. Ohneda, K. Ohneda, and M. Yamamoto, “GATA-4 incompletely substitutes for GATA-1 in promoting both primitive and definitive erythropoiesis in vivo,” Journal of Biological Chemistry, vol. 281, no. 43, pp. 32820–32830, 2006.
[125]  R. Shimizu, S. Takahashi, K. Ohneda, J. D. Engel, and M. Yamamoto, “In vivo requirements for GATA-1 functional domains during primitive and definitive erythropoiesis,” EMBO Journal, vol. 20, no. 18, pp. 5250–5260, 2001.
[126]  F.-Y. Tsal, G. Keller, F. C. Kuo et al., “An early haematopoietic defect in mice lacking the transcription factor GATA-2,” Nature, vol. 371, no. 6494, pp. 221–226, 1994.
[127]  N. Emambokus, A. Vegiopoulos, B. Harman, E. Jenkinson, G. Anderson, and J. Frampton, “Progression through key stages of haemopoiesis is dependent on distinct threshold levels of c-Myb,” EMBO Journal, vol. 22, no. 17, pp. 4478–4488, 2003.
[128]  S. Taoudi, T. Bee, A. Hilton et al., “ERG dependence distinguishes developmental control of hematopoietic stem cell maintenance from hematopoietic specification,” Genes and Development, vol. 25, no. 3, pp. 251–262, 2011.
[129]  Y. Feng, Y. Yang, M. M. Ortega et al., “Early mammalian erythropoiesis requires the Dot1L methyltransferase,” Blood, vol. 116, no. 22, pp. 4483–4491, 2010.
[130]  à. Robert-Moreno, L. Espinosa, M. J. Sanchez, J. L. de la Pompa, and A. Bigas, “The notch pathway positively regulates programmed cell death during erythroid differentiation,” Leukemia, vol. 21, no. 7, pp. 1496–1503, 2007.
[131]  A. Fantoni, A. di la Chapelle, and P. A. Marks, “Synthesis of embryonic hemoglobins during erythroid cell development in fetal mice,” Journal of Biological Chemistry, vol. 244, no. 4, pp. 675–681, 1969.
[132]  A. Fantoni, M. G. Farace, and R. Gambari, “Embryonic hemoglobins in man and other mammals,” Blood, vol. 57, no. 4, pp. 623–633, 1981.
[133]  S. Liu, S. C. McConnell, and T. M. Ryan, “Erythropoiesis in the absence of adult hemoglobin,” Molecular and Cellular Biology, vol. 33, no. 11, pp. 2241–2251, 2013.
[134]  O. Nakajima, S. Takahashi, H. Harigae et al., “Heme deficiency in erythroid lineage causes differentiation arrest and cytoplasmic iron overload,” EMBO Journal, vol. 18, no. 22, pp. 6282–6289, 1999.
[135]  O. Nakajima, S. Okano, H. Harada et al., “Transgenic rescue of erythroid 5-aminolevulinate synthase-deficient mice results in the formation of ring sideroblasts and siderocytes,” Genes to Cells, vol. 11, no. 6, pp. 685–700, 2006.
[136]  O. Tanabe, Y. Shen, Q. Liu et al., “The TR2 and TR4 orphan nuclear receptors repress Gata1 transcription,” Genes and Development, vol. 21, no. 21, pp. 2832–2844, 2007.
[137]  Z. Yi, O. Cohen-Barak, N. Hagiwara et al., “Sox6 directly silences epsilon globin expression in definitive erythropoiesis,” PLoS Genetics, vol. 2, no. 2, article e14, 2006.
[138]  B. B. Hyde, M. Liesa, A. A. Elorza et al., “The mitochondrial transporter ABC-me (ABCB10), a downstream target of GATA-1, is essential for erythropoiesis in vivo,” Cell Death and Differentiation, vol. 19, no. 7, pp. 1117–1126, 2012.
[139]  W. D. Cohen, M. F. Cohen, C. H. Tyndale-Biscoe, J. L. VandeBerg, and G. B. Ralston, “The cytoskeletal system of mammalian primitive erythrocytes: studies in developing marsupials,” Cell Motility and the Cytoskeleton, vol. 16, no. 2, pp. 133–145, 1990.
[140]  K. Morioka and R. Minamikawa-Tachino, “Temporal characteristics of the differentiation of embryonic erythroid cells in fetal peripheral blood of the Syrian hamster,” Development Growth and Differentiation, vol. 35, no. 5, pp. 569–582, 1993.
[141]  K. E. McGrath, P. D. Kingsley, A. D. Koniski, R. L. Porter, T. P. Bushnell, and J. Palis, “Enucleation of primitive erythroid cells generates a transient population of “pyrenocytes” in the mammalian fetus,” Blood, vol. 111, no. 4, pp. 2409–2417, 2008.
[142]  J. A. Chasis and N. Mohandas, “Erythroblastic islands: niches for erythropoiesis,” Blood, vol. 112, no. 3, pp. 470–478, 2008.
[143]  R. E. Waugh, Y. Huang -S, B. J. Arif, R. Bauserman, and J. Palis, “Development of membrane mechanical function during terminal stages of primitive erythropoiesis in mice,” Experimental Hematology, pp. 1–13, 2013.
[144]  W. Bloom and G. W. Bartelmez, “Hematopoiesis in young human embryos,” American Journal of Anatomy, vol. 67, no. 1, pp. 21–53, 1940.
[145]  C. van Deurs and O. Behnke, “The microtubule marginal band of mammalian red blood cells,” Zeitschrift für Anatomie und Entwicklungsgeschichte, vol. 143, no. 1, pp. 43–47, 1973.
[146]  S. T. Koury, M. J. Koury, and M. C. Bondurant, “Cytoskeletal distribution and function during the maturation and enucleation of mammalian erythroblasts,” Journal of Cell Biology, vol. 109, no. 6, pp. 3005–3013, 1989.
[147]  E. A. Repasky and B. S. Eckert, “Microtubules in mammalian erythroblasts. Are marginal bands present?” Anatomy and Embryology, vol. 162, no. 4, pp. 419–424, 1981.
[148]  W. D. Cohen and N. Barclay Terwilliger, “Marginal bands in camel erythrocytes,” Journal of Cell Science, vol. 36, pp. 97–107, 1979.
[149]  J. E. Barker, “Development of the mouse hematopoietic system. I. Types of hemoglobin produced in embryonic yolk sac and liver,” Developmental Biology, vol. 18, no. 1, pp. 14–29, 1968.
[150]  T. Trimborn, J. Gribnau, F. Grosveld, and P. Fraser, “Mechanisms of developmental control transcription in the murine α and β-globin loci,” Genes and Development, vol. 13, no. 1, pp. 112–124, 1999.
[151]  A. Leder, A. Kuo, M. M. Shen, and P. Leder, “In situ hybridization reveals co-expression of embryonic and adult α globin genes in the earliest murine erythrocyte progenitors,” Development, vol. 116, no. 4, pp. 1041–1049, 1992.
[152]  M. Hsu, R. Mabaera, C. H. Lowrey, D. I. K. Martin, and S. Fiering, “CpG hypomethylation in a large domain encompassing the embryonic β-like globin genes in primitive erythrocytes,” Molecular and Cellular Biology, vol. 27, no. 13, pp. 5047–5054, 2007.
[153]  G. Fromm, B. Cadiz-Rivera, C. di Vries et al., “An embryonic stage-specific enhancer within the murine β-globin locus mediates domain-wide histone hyperacetylation,” Blood, vol. 117, no. 19, pp. 5207–5214, 2011.
[154]  C. Peschle, F. Mavilio, A. Care, et al., “Haemoglobin switching in human embryos: asynchrony of ζ→α and ε→γ-globin switches in primitive and definitive erythropoietic lineage,” Nature, vol. 313, no. 5999, pp. 235–238, 1985.
[155]  C. Cantù, R. Ierardi, I. Alborelli et al., “Sox6 enhances erythroid differentiation in human erythroid progenitors,” Blood, vol. 117, no. 13, pp. 3669–3679, 2011.
[156]  B. Dumitriu, P. Bhattaram, P. Dy et al., “Sox6 is necessary for efficient erythropoiesis in adult mice under physiological and anemia-induced stress conditions,” PLoS ONE, vol. 5, no. 8, Article ID e12088, 2010.
[157]  B. Dumitriu, M. R. Patrick, J. P. Petschek et al., “Sox6 cell-autonomously stimulates erythroid cell survival, proliferation, and terminal maturation and is thereby an important enhancer of definitive erythropoiesis during mouse development,” Blood, vol. 108, no. 4, pp. 1198–1207, 2006.
[158]  E. Greenfest-Allen, J. Malik, J. Palis, and C. J. Stoeckert Jr., “Stat and interferon genes identified by network analysis differentially regulate primitive and definitive erythropoiesis,” BMC Systems Biology, vol. 7, article 38, 2013.
[159]  A. Bauer, F. Tronche, O. Wessely et al., “The glucocorticoid receptor is required for stress erythropoiesis,” Genes and Development, vol. 13, no. 22, pp. 2996–3002, 1999.
[160]  L. Varricchio, E. Masselli, E. Alfani et al., “The dominant negative β isoform of the glucocorticoid receptor is uniquely expressed in erythroid cells expanded from polycythemia vera patients,” Blood, vol. 118, no. 2, pp. 425–436, 2011.
[161]  K. T. Greig, S. Carotta, and S. L. Nutt, “Critical roles for c-Myb in hematopoietic progenitor cells,” Seminars in Immunology, vol. 20, no. 4, pp. 247–256, 2008.
[162]  K. Onodera, S. Takahashi, S. Nishimura, et al., “GATA-1 transcription is controlled by distinct regulatory mechanisms during primitive and definitive?erythropoiesis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 9, pp. 4487–4492, 1997.
[163]  S. Takahashi, K. Onodera, H. Motohashi et al., “Arrest in primitive erythroid cell development caused by promoter- specific disruption of the GATA-1 gene,” Journal of Biological Chemistry, vol. 272, no. 19, pp. 12611–12615, 1997.
[164]  E. Delabesse, S. Ogilvy, M. A. Chapman, S. G. Piltz, B. Gottgens, and A. R. Green, “Transcriptional regulation of the SCL locus: identification of an enhancer that targets the primitive erythroid lineage in vivo,” Molecular and Cellular Biology, vol. 25, no. 12, pp. 5215–5225, 2005.
[165]  R. D. Berahovich, B. A. Zabel, M. E. T. Penfold et al., “CXCR7 protein is not expressed on human or mouse leukocytes,” The Journal of Immunology, vol. 185, no. 9, pp. 5130–5139, 2010.
[166]  S. Ponnusamy, H. Zhang, P. Kadam, Q. Lin, and T. K. Lim, “Membrane proteins of human fetal primitive nucleated red blood cells,” Journal of Proteomics, vol. 75, no. 18, pp. 5762–5773, 2012.
[167]  J. L. O. di Jong and L. I. Zon, “Use of the zebrafish system to study primitive and definitive hematopoiesis,” Annual Review of Genetics, vol. 39, pp. 481–501, 2005.
[168]  M. Kikkawa, M. Yamazaki, Y. Izutsu, and M. Maéno, “Two-step induction of primitive erythrocytes in Xenopus laevis embryos: signals from the vegetal endoderm and the overlying ectoderm,” International Journal of Developmental Biology, vol. 45, no. 2, pp. 387–396, 2001.
[169]  J. B. Turpen, C. M. Kelley, P. E. Mead, and L. I. Zon, “Bipotential primitive-definitive hematopoietic progenitors in the vertebrate embryo,” Immunity, vol. 7, no. 3, pp. 325–334, 1997.
[170]  G. Sheng, “Primitive and definitive erythropoiesis in the yolk sac: a bird's eye view,” International Journal of Developmental Biology, vol. 54, no. 6-7, pp. 1033–1043, 2010.
[171]  R. A. Smith and C. A. Glomski, “Embryonic and fetal hemopoiesis in the Mongolian gerbil (Meriones unguiculatus),” The Anatomical Record, vol. 189, no. 3, pp. 499–517, 1977.
[172]  K. Tiedemann, “On the yolk sac of the cat. II. Erythropoietic phases, ultrastructure of aging primitive erythroblasts, and blood vessels,” Cell and Tissue Research, vol. 183, no. 1, pp. 71–89, 1977.
[173]  M. T. Alsalampi and L. J. Filippich, “Haematology of foetal sheep,” Australian Veterinary Journal, vol. 77, no. 9, pp. 588–594, 1999.
[174]  G. Migliaccio, A. R. Migliaccio, and S. Petti, “Human embryonic hemopoiesis. Kinetics of progenitors and precursors underlying the yolk sac—liver transition,” Journal of Clinical Investigation, vol. 78, no. 1, pp. 51–60, 1986.
[175]  W. Bloom and G. W. Bartelmez, “Hematopoiesis in young human embryos,” American Journal of Anatomy, vol. 67, no. 1, pp. 21–53, 1940.
[176]  J. P. Tapiol and G. Niimi, “Embryonic erythropoiesis in human yolk sac: two different compartments for two different processes,” Microscopy Research and Technique, vol. 71, no. 12, pp. 856–862, 2008.
[177]  J. Pereda, J. I. Monge, and G. Niimi, “Two different pathways for the transport of primitive and definitive blood cells from the yolk sac to the embryo in humans,” Microscopy Research and Technique, vol. 73, no. 8, pp. 803–809, 2010.
[178]  C. Menier, M. Rabreau, J.-C. Challier, M. Le Discorde, E. D. Carosella, and N. Rouas-Freiss, “Erythroblasts secrete the nonclassical HLA-G molecule from primitive to definitive hematopoiesis,” Blood, vol. 104, no. 10, pp. 3153–3160, 2004.
[179]  D. S. Kaufman, E. T. Hanson, R. L. Lewis, R. Auerbach, and J. A. Thomson, “Hematopoietic colony-forming cells derived from human embryonic stem cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 19, pp. 10716–10721, 2001.
[180]  E. T. Zambidis, B. Peault, T. S. Park, F. Bunz, and C. I. Civin, “Hematopoietic differentiation of human embryonic stem cells progresses through sequential hematoendothelial, primitive, and definitive stages resembling human yolk sac development,” Blood, vol. 106, no. 3, pp. 860–870, 2005.
[181]  E. T. Zambidis, T. S. Park, W. Yu et al., “Expression of angiotensin-converting enzyme (CD143) identifies and regulates primitive hemangioblasts derived from human pluripotent stem cells,” Blood, vol. 112, no. 9, pp. 3601–3614, 2008.
[182]  K.-H. Chang, A. Huang, R. K. Hirata, P.-R. Wang, D. Russell, and T. Papayannopoulou, “Globin phenotype of erythroid cells derived from human induced pluripotent stem cells,” Blood, vol. 115, no. 12, pp. 2553–2554, 2010.
[183]  G. R. Honig, S.-J. Lu, Q. Feng, L. N. Vida, B.-S. Lee, and R. Lanza, “α-thalassemia-like globin gene expression by primitive erythrocytes derived from human embryonic stem cells,” Hemoglobin, vol. 34, no. 2, pp. 145–150, 2010.
[184]  C. Cerdan, A. Rouleau, and M. Bhatia, “VEGF-A165 augments erythropoietic development from human embryonic stem cells,” Blood, vol. 103, no. 7, pp. 2504–2512, 2004.
[185]  M. V. Pryzhkova, A. Peters, and E. T. Zambidis, “Erythropoietic differentiation of a human embryonic stem cell line harbouring the sickle cell anaemia mutation,” Reproductive BioMedicine Online, vol. 21, no. 2, pp. 196–205, 2010.
[186]  C.-J. Chang, K. Mitra, M. Koya et al., “Production of embryonic and fetal-like red blood cells from human induced pluripotent stem cells,” PLoS ONE, vol. 6, no. 10, Article ID e25761, 2011.
[187]  K.-H. Chang, H. Bonig, and T. Papayannopoulou, “Generation and characterization of erythroid cells from human embryonic stem cells and induced pluripotent stem cells: an overview,” Stem Cells International, vol. 2011, Article ID 791604, 10 pages, 2011.
[188]  S. T. Chou, M. Byrska-Bishop, J. M. Tober, et al., “Trisomy 21-associated defects in human primitive hematopoiesis revealed through induced pluripotent stem cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 109, no. 43, pp. 17573–17578, 2012.
[189]  Z. Ye, H. Zhan, P. Mali et al., “Human-induced pluripotent stem cells from blood cells of healthy donors and patients with acquired blood disorders,” Blood, vol. 114, no. 27, pp. 5473–5480, 2009.
[190]  T. Itinteang, S. T. Tan, H. Brasch, and D. J. Day, “Haemogenic endothelium in infantile haemangioma,” Journal of Clinical Pathology, vol. 63, no. 11, pp. 982–986, 2010.
[191]  T. Itinteang, S. T. Tan, H. D. Brasch, A. Vishvanath, and D. J. Day, “Primitive erythropoiesis in infantile haemangioma,” British Journal of Dermatology, vol. 164, no. 5, pp. 1097–1100, 2011.
[192]  Z. He and J. E. Russell, “Expression, purification, and characterization of human hemoglobins Gower-1 (ζ2ε2), Gower-2 (α2ε2), and Portland-2 (ζ2β2) assembled in complex transgenic-knockout mice,” Blood, vol. 97, no. 4, pp. 1099–1105, 2001.
[193]  F. Erard, A. Dean, and A. N. Schechter, “Inhibitor of cell division reversibly modify hemoglobin concentration in human erythroleukemia K562 cells,” Blood, vol. 58, no. 6, pp. 1236–1239, 1981.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413