全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Hemoglobin A2 Lowered by Iron Deficiency and α-Thalassemia: Should Screening Recommendation for β-Thalassemia Change?

DOI: 10.1155/2013/858294

Full-Text   Cite this paper   Add to My Lib

Abstract:

Screening for β-thalassemia trait (BTT) relies on measuring hemoglobin (Hb) A2. Since multiple factors can affect HbA2 levels, the screening can become unreliable. In 1356 healthy Arabs enrolled into a federally funded premarital BTT screening program, the effects of iron deficiency (ID), -thalassemia trait, gender, smoking, and tribalism on HbA2 were studied. The complete blood count and hemoglobin fractions were determined on the entire cohort; serum ferritin (<15?μg/L) in 391 subjects was used to determine ID. BTT was present in 29 (2.1%) subjects (HbA2 > 3.5%). Among 77(20.3%) subjects with ID, the mean HbA2 ( %) was 0.2% lower than in subjects without iron deficiency ( %, ). In 65 (38%)/172 subjects with phenotypic -thalassemia trait, the mean HbA2 ( %) was 0.13% lower than in subjects without -thalassemia trait, . The mean HbA2 did not differ between males and females, smokers and nonsmokers, and between the tribes. Thus, 35 (2.6%) subjects with HbA2 between 3.2 and 3.5% were at a risk of false negative diagnosis of BTT. Since iron deficiency and -thalassemia are both common and both lower HbA2, modifications in screening recommendations for BTT are proposed. 1. Introduction Screening for β-thalassemia trait (BTT) depends on measuring hemoglobin (Hb) A2 accurately. However, since many factors like iron deficiency, α-thalassemia, β-gene mutations, gender, and smoking may affect HbA2 levels, the screening of BTT can be compromised [1–5]. The United Arab Emirates (UAE) is a multiethnic country with a BTT screening program because of a heavy burden of β-thalassemia disease. Consanguinity is common and marriages in the native population are arranged within the same tribe, which restricts gene flow and produces a heterogeneous distribution of BTT [6, 7]. As a preventive measure, mandatory federal premarital screening has been instituted throughout the UAE. In this population, though iron deficiency is common, iron stores are not routinely evaluated during the screening for BTT. In addition, α-thalassemia mutations are also frequent; this is important for BTT screening since their coinheritance with β-thalassemia mutations may lower the level of HbA2. Furthermore, α-thalassemia alters MCV and MCH, which adds to the risk of a missed diagnosis of BTT [2, 8]. In the UAE, 44 different β-thalassemia mutations have been reported though their phenotype, and the prevalence of silent mutations have not been systematically investigated [9–13]. Moreover, in this population the differences in lifestyle between genders might affect HbA2; for example, smoking is

References

[1]  M. Verhovsek, C. C. So, T. O'shea, et al., “Is HbA2 level a reliable diagnostic measurement for beta-thalassemia trait in people with iron deficiency?” American Journal of Hematology, vol. 87, pp. 114–116, 2012.
[2]  C. L. Harteveld and D. R. Higgs, “Alpha-thalassaemia,” Orphanet Journal of Rare Diseases, vol. 5, article 13, 2010.
[3]  T. H. J. Huisman, “Levels of Hb A2 in heterozygotes and homozygotes for beta-thalassemia mutations: influence of mutations in the CACCC and ATAAA motifs of the beta-globin gene promoter,” Acta Haematologica, vol. 98, no. 4, pp. 187–194, 1997.
[4]  S. L. Thein, “Genetic modifiers of β-thalassemia,” Haematologica, vol. 90, no. 5, pp. 649–660, 2005.
[5]  I. S. Tarazi, M. M. Sirdah, H. El Jeadi, and R. M. Al Haddad, “Does cigarette smoking affect the diagnostic reliability of hemoglobin α2δ2 (HbA2)?” Journal of Clinical Laboratory Analysis, vol. 22, no. 2, pp. 119–122, 2008.
[6]  L. I. Al-Gazali, R. Alwash, and Y. M. Abdulrazzaq, “United Arab Emirates: communities and community genetics,” Community Genetics, vol. 8, no. 3, pp. 186–196, 2005.
[7]  S. Denic, B. Aden, N. Nagelkerke, and A. E. Awad, “Beta-thalassemia in Abu Dhabi: consanguinity and tribal stratification are major factors explaining the high prevalence of disease,” Hemoglobin. In press.
[8]  S. El-Kalla and E. Baysal, “α-thalassemia in the United Arab Emirates,” Acta Haematologica, vol. 100, no. 1, pp. 49–53, 1998.
[9]  R. Quaife, L. Al-Gazali, S. Abbes et al., “The spectrum of β thalassaemia mutations in the UAE national population,” Journal of Medical Genetics, vol. 31, no. 1, pp. 59–61, 1994.
[10]  E. Baysal, “Molecular heterogeneity of beta-thalassemia in the United Arab Emirates,” Community Genetics, vol. 8, no. 1, pp. 35–39, 2005.
[11]  E. Baysal, “Molecular basis of beta-thalassemia in the United Arab Emirates,” Hemoglobin, vol. 35, pp. 581–588, 2011.
[12]  S. El-Kalla and A. R. Mathews, “Molecular characterization of β-thalassemia in the United Arab Emirates,” Hemoglobin, vol. 17, no. 4, pp. 355–362, 1993.
[13]  S. El-Kalla and A. R. Mathews, “A significant β-thalassemia heterogeneity in the United Arab Emirates,” Hemoglobin, vol. 21, no. 3, pp. 237–247, 1997.
[14]  S. W. Ng, S. Zaghloul, H. I. Ali, G. Harrison, and B. M. Popkin, “The prevalence and trends of overweight, obesity and nutrition-related non-communicable diseases in the Arabian Gulf States,” Obesity Reviews, vol. 12, no. 1, pp. 1–13, 2011.
[15]  S. Denic, A. K. Souid, N. Nagelkerke, S. Showqi, and G. Balhaj, “Erythrocyte reference values in Emirati people with and without α+ thalassemia,” BMC Blood Disorders, vol. 11, article 1, 2011.
[16]  I. Agouti, F. Merono, N. Bonello-Palot, and C. Badens, “Analytical evaluation of the capillarys 2 flex piercing for routine haemoglobinopathies diagnosis,” International Journal of Laboratory Hematology, 2012.
[17]  World Health Organization, Department of Nutrition for Health and Development. Iron Deficiency Anaemia : Assessment, Prevention and Control : A Guide for Programme Managers, World Health Organization, Geneva, Switzerland, 2001.
[18]  E. Baysal, “Alpha-thalassemia syndromes in the United Arab Emirates,” Hemoglobin, vol. 35, pp. 574–580, 2011.
[19]  J. Traeger-Synodinos, I. Papassotiriou, C. Vrettou, C. Skarmoutsou, A. Stamoulakatou, and E. Kanavakis, “Erythroid marrow activity and functional anemia in patients with the rare interaction of a single functional α-globin and β-globin gene,” Haematologica, vol. 86, no. 4, pp. 363–367, 2001.
[20]  J. M. Old, “Screening and genetic diagnosis of haemoglobinopathies,” Scandinavian Journal of Clinical and Laboratory Investigation, vol. 67, no. 1, pp. 71–86, 2007.
[21]  I. Bianco, M. P. Cappabianca, E. Foglietta et al., “Silent thalassemias: genotypes and phenotypes,” Haematologica, vol. 82, no. 3, pp. 269–280, 1997.
[22]  A. Mosca, R. Paleari, R. Galanello et al., “New analytical tools and epidemiological data for the identification of HbA2 borderline subjects in the screening for beta-thalassemia,” Bioelectrochemistry, vol. 73, no. 2, pp. 137–140, 2008.
[23]  A. Giambona, C. Passarello, M. Vinciguerra et al., “Significance of borderline hemoglobin A2 values in an Italian population with a high prevalence of β-thalassemia,” Haematologica, vol. 93, no. 9, pp. 1380–1384, 2008.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413