全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Multiple Periodic Solutions of Generalized Gause-Type Predator-Prey Systems with Nonmonotonic Numerical Responses and Impulse

DOI: 10.1155/2014/347201

Full-Text   Cite this paper   Add to My Lib

Abstract:

We consider an impulsive periodic generalized Gause-type predator-prey model with nonmonotonic numerical responses. Using the continuation theorem of coincidence degree theory, we present an easily verifiable sufficient condition on the existence of multiple periodic solutions. As corollaries, some applications are listed. In particular, our results extend and improve some known criteria. 1. Introduction One of the powerful and effective methods on the existence of periodic solutions to periodic systems is the continuation method, which gives easily verifiable sufficient conditions. See Gaines and Mawhin [1] for detailed description of this method. In [2], Chen studied the following periodic predator-prey system with a Holling type IV functional response: where , , , , and , , are -periodic functions with and , and , are positive constants. The results on the existence of multiple periodic solutions have been obtained by employing the continuation method. There are some works following this direction. See, for example, [3–6]. To generalize Chen’s results, Ding and Jiang [4] considered the following periodic Gause-type predator-prey system with time delays: where , , , and are continuous -periodic functions with . They also afforded verifiable criteria for the existence of multiple positive periodic solutions for the system (2) when the numerical response function is nonmonotonic. Their results improve and supplement those in [2]. As we know, in population dynamics, many evolutionary processes experience short-time rapid change after undergoing relatively long smooth variation. For example, the harvesting and stocking occur at fixed time, and some species usually immigrate at the same time every year. Incorporating these phenomena gives us impulsive differential equations. For theory of impulsive differential equations, we refer to [7–16]. Based on the previous ideas, in [17], Wang, Dai, and Chen considered the following impulse predator-prey system with a Holling type IV functional response: where the assumptions on , , , , , , , , , are the same as (1), ( , , ), is a strictly increasing sequence with , and . Further, there exist a such that ( , ) and for . By employing the continuation theorem, they presented sufficient conditions on the existence of two positive periodic solutions to system (3). In this paper, we will consider the following Gause-type predator-prey systems with impulse and time delays: where the assumptions on , , , , , and are the same as (3). and are the prey and the predator population size, respectively. The function is the growth

References

[1]  R. E. Gaines and J. L. Mawhin, Coincidence Degree, and Nonlinear Differential Equations, Springer, Berlin, Germany, 1977.
[2]  Y. M. Chen, “Multiple periodic solutions of delayed predator-prey systems with type IV functional responses,” Nonlinear Analysis: Real World Applications, vol. 5, no. 1, pp. 45–53, 2004.
[3]  D. M. Xiao and S. G. Ruan, “Multiple bifurcations in a delayed predator-prey system with nonmonotonic functional response,” Journal of Differential Equations, vol. 176, no. 2, pp. 494–510, 2001.
[4]  X. Q. Ding and J. F. Jiang, “Multiple periodic solutions in generalized Gause-type predator-prey systems with non-monotonic numerical responses,” Nonlinear Analysis: Real World Applications, vol. 10, no. 5, pp. 2819–2827, 2009.
[5]  X. L. Hu, G. R. Liu, and J. R. Yan, “Existence of multiple positive periodic solutions of delayed predator-prey models with functional responses,” Computers & Mathematics with Applications, vol. 52, no. 10-11, pp. 1453–1462, 2006.
[6]  Y. H. Xia, J. D. Cao, and S. S. Cheng, “Multiple periodic solutions of a delayed stage-structured predator-prey model with non-monotone functional responses,” Applied Mathematical Modelling, vol. 31, no. 9, pp. 1947–1959, 2007.
[7]  Z. G. Luo and J. H. Shen, “New Razumikhin type theorems for impulsive functional differential equations,” Applied Mathematics and Computation, vol. 125, no. 2-3, pp. 375–386, 2002.
[8]  G. Ballinger and X. Z. Liu, “Existence, uniqueness and boundedness results for impulsive delay differential equations,” Applicable Analysis, vol. 74, no. 1-2, pp. 71–93, 2000.
[9]  B. Liu, Z. D. Teng, and W. B. Liu, “Dynamic behaviors of the periodic Lotka-Volterra competing system with impulsive perturbations,” Chaos, Solitons and Fractals, vol. 31, no. 2, pp. 356–370, 2007.
[10]  D. Ba?nov and P. Simeonov, Impulsive Differential Equations: Periodic Solutions and Applications, vol. 66, Longman Sci. Tech., Harlow, UK, 1993.
[11]  V. Lakshmikantham, D. Bainov, and P. Simeonov, Theory of Impulsive Dfferential Equations, vol. 6, World Scientific Publishing, Teaneck, NJ, USA, 1989.
[12]  Z. G. Luo, B. X. Dai, and Q. Wang, “Existence of positive periodic solutions for a nonautonomous neutral delay -species competitive model with impulses,” Nonlinear Analysis: Real World Applications, vol. 11, no. 5, pp. 3955–3967, 2010.
[13]  X. D. Li and X. L. Fu, “On the global exponential stability of impulsive functional differential equations with infinite delays or finite delays,” Communications in Nonlinear Science and Numerical Simulation, vol. 19, no. 3, pp. 442–447, 2013.
[14]  Z. G. Luo and L. P. Luo, “Existence and stability of positive periodic solutions for a neutral multispecies Logarithmic population model with feedback control and impulse,” Abstract and Applied Analysis, vol. 2013, Article ID 741043, 11 pages, 2013.
[15]  Z. G. Luo and L. P. Luo, “Global positive periodic solutions of generalized -species competition systems with multiple delays and impulses,” Abstract and Applied Analysis, vol. 2013, Article ID 980974, 13 pages, 2013.
[16]  M. Liu and K. Wang, “Asymptotic behavior of a stochastic nonautonomous Lotka-Volterra competitive system with impulsive perturbations,” Mathematical and Computer Modelling, vol. 57, no. 3-4, pp. 909–925, 2013.
[17]  Q. Wang, B. X. Dai, and Y. M. Chen, “Multiple periodic solutions of an impulsive predator-prey model with Holling-type IV response,” Mathematical and Computer Modelling, vol. 49, no. 9-10, pp. 1829–1836, 2009.
[18]  B. X. Dai, H. Su, and D. W. Hu, “Periodic solution of a delayed ratio-dependent predator-prey model with monotonic functional response and impulse,” Nonlinear Analysis: Theory, Methods & Applications, vol. 70, no. 1, pp. 126–134, 2009.
[19]  S. M. Moghadas and B. D. Corbett, “Limit cycles in a generalized Gause-type predator-prey model,” Chaos, Solitons and Fractals, vol. 37, no. 5, pp. 1343–1355, 2008.
[20]  X. Q. Ding and J. F. Jiang, “Positive periodic solutions in delayed Gause-type predator-prey systems,” Journal of Mathematical Analysis and Applications, vol. 339, no. 2, pp. 1220–1230, 2008.
[21]  Y. Kuang and E. Beretta, “Global qualitative analysis of a ratio-dependent predator-prey system,” Journal of Mathematical Biology, vol. 36, no. 4, pp. 389–406, 1998.
[22]  J. F. Andrews, “A mathematical model for the continuous cul ture of microorgnaisms utilizing inhibitory substrates,” Biotechnology and Bioengineering, vol. 10, pp. 707–723, 1986.
[23]  W. Sokol and J. A. Howell, “Kinetics of phenol oxidation by washed cells,” Biotechnology and Bioengineering, vol. 23, pp. 2039–2049, 1980.
[24]  F. E. Smith, “Population dynamics in daphnia magna and a new model for population growth,” Ecology, vol. 44, pp. 651–663, 1963.
[25]  K. Gopalsamy and G. Ladas, “On the oscillation and asymptotic behavior of ,” Quarterly of Applied Mathematics, vol. 3, pp. 433–440, 1990.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133