全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

The Main Aeromonas Pathogenic Factors

DOI: 10.5402/2012/256261

Full-Text   Cite this paper   Add to My Lib

Abstract:

The members of the Aeromonas genus are ubiquitous, water-borne bacteria. They have been isolated from marine waters, rivers, lakes, swamps, sediments, chlorine water, water distribution systems, drinking water and residual waters; different types of food, such as meat, fish, seafood, vegetables, and processed foods. Aeromonas strains are predominantly pathogenic to poikilothermic animals, and the mesophilic strains are emerging as important pathogens in humans, causing a variety of extraintestinal and systemic infections as well as gastrointestinal infections. The most commonly described disease caused by Aeromonas is the gastroenteritis; however, no adequate animal model is available to reproduce this illness caused by Aeromonas. The main pathogenic factors associated with Aeromonas are: surface polysaccharides (capsule, lipopolysaccharide, and glucan), S-layers, iron-binding systems, exotoxins and extracellular enzymes, secretion systems, fimbriae and other nonfilamentous adhesins, motility and flagella. 1. Introduction Ever since the first reference of an organism that could be considered a motile aeromonad in 1891 the taxonomy of the genus Aeromonas, initiated in 1943, is complex and continuously changing. Although historically the genus Aeromonas was included in the family Vibrionaceae, together with the genera Vibrio, Photobacterium, and Plesiomonas, phylogenetic investigations indicated that they should form their own family: Aeromonadaceae [1]. The family Aeromonadaceae consists of Gram-negative, facultative anaerobic, chemoorganotroph bacteria with an optimal growing temperature of about 22°C to 28°C. Generally they are motile by polar flagellation, able to reduce nitrates to nitrites and able to catabolize glucose and several carbohydrates while producing acids and often gases as well. Initially, in Bergey’s Manual of Systematic Bacteriology this family only included the genus Aeromonas and was divided into two principal subgroups: the nonmotile and psycnrophilic species (A. salmonicida) and the motile and mesophilic species (A. hydrophila, A. caviae, and A. sobria) [2]. The current edition, list three genera in this family: Aeromonas, Oceanimonas, and Tolumonas [3]. The first classifications within the Aeromonas genus have been determined phenotypically (phenospecies), based on growth characteristics and biochemical tests. Nevertheless, there is a great difficulty in identifying the different Aeromonas strains on a species level by these characteristics, due to the phenotypical heterogeneity and growing number of known species [4]. One of the

References

[1]  R. R. Colwell, M. T. MacDonell, and J. De Ley, “Proposal to recognize the family Aeromonadaceae fam. nov,” International Journal of Systematic Bacteriology, vol. 36, no. 3, pp. 473–477, 1986.
[2]  M. Popoff, “Genus III. Aeromonas. Kluyver and Van Niel 1936, 398 AL,” in Bergey's Manual of Systematic Bacteriology, Vol. 1, N. R. Krieg and J. J. Holt, Eds., section 5, pp. 545–547, Williams and Wilkins, London, 9th edition, 1984.
[3]  A. Martin-Carnahan and S. W. Joseph, “Order XII. Aeromonadales,” in Bergey's Manual of Systematic Bacteriology, Vol. 2 Part B, D. J. Brenner, N. R. Krieg, and J. T. Staley, Eds., pp. 556–578, Springer, New York, NY, USA, 2nd edition, 2005.
[4]  S. L. Abbott, W. K. W. Cheung, and J. M. Janda, “The genus Aeromonas: biochemical characteristics, atypical reactions, and phenotypic identification schemes,” Journal of Clinical Microbiology, vol. 41, no. 6, pp. 2348–2357, 2003.
[5]  A. J. Martinez-Murcia, S. Benlloch, and M. D. Collins, “Phylogenetic interrelationships of members of the genera Aeromonas and Plesiomonas as determined by 16S ribosomal DNA sequencing: lack of congruence with results of DNA-DNA hybridizations,” International Journal of Systematic Bacteriology, vol. 42, no. 3, pp. 412–421, 1992.
[6]  A. J. Martínez-Murcia, C. Esteve, E. Garay, and M. D. Collins, “Aeromonas allosaccharophila sp. nov., a new mesophilic member of the genus Aeromonas,” FEMS Microbiology Letters, vol. 91, no. 3, pp. 199–205, 1992.
[7]  M. J. Figueras, J. Guarro, A. Martinez-Murcia, and J. Graf, “Use of restriction fragment length polymorphism of the PCR-amplified 16S rRNA gene for the identification of Aeromonas spp.,” Journal of Clinical Microbiology, vol. 38, no. 5, pp. 2023–2025, 2000.
[8]  M. A. Yá?ez, V. Catalán, D. Apráiz, M. J. Figueras, and A. J. Martínez-Murcia, “Phylogenetic analysis of members of the genus Aeromonas based on gyrB gene sequences,” International Journal of Systematic and Evolutionary Microbiology, vol. 53, no. 3, pp. 875–883, 2003.
[9]  L. Soler, M. A. Yá?ez, M. R. Chacon et al., “Phylogenetic analysis of the genus Aeromonas based on two housekeeping genes,” International Journal of Systematic and Evolutionary Microbiology, vol. 54, no. 5, pp. 1511–1519, 2004.
[10]  C. Esteve, M. C. Gutierrez, and A. Ventosa, “Aeromonas encheleia sp. nov., isolated from European Eels,” International Journal of Systematic Bacteriology, vol. 45, no. 3, pp. 462–466, 1995.
[11]  G. Huys, P. K?mpfer, M. Altwegg et al., “Aeromonas popoffii sp. nov., a mesophilic bacterium isolated from drinking water production plants and reservoirs,” International Journal of Systematic Bacteriology, vol. 47, no. 4, pp. 1165–1171, 1997.
[12]  V. Pidiyar, A. Kaznowski, N. B. Narayan, M. Patole, and Y. S. Shouche, “Aeromonas culicicola sp. nov., from the midgut of Culex quinquefasciatus,” International Journal of Systematic and Evolutionary Microbiology, vol. 52, no. 5, pp. 1723–1728, 2002.
[13]  C. Harf-Monteil, A. L. Flèche, P. Riegel et al., “Aeromonas simiae sp. nov., isolated from monkey faeces,” International Journal of Systematic and Evolutionary Microbiology, vol. 54, no. 2, pp. 481–485, 2004.
[14]  D. Mi?ana-Galbis, M. Farfán, M. C. Fusté, and J. G. Lorén, “Aeromonas molluscorum sp. nov., isolated from bivalve molluscs,” International Journal of Systematic and Evolutionary Microbiology, vol. 54, no. 6, pp. 2073–2078, 2004.
[15]  A. J. Martínez-Murcia, “Phylogenetic positions of Aeromonas encheleia, Aeromonas popoffii, Aeromonas DNA hybridization Group 11 and Aeromonas Group 501,” International Journal of Systematic Bacteriology, vol. 49, no. 4, pp. 1403–1408, 1999.
[16]  J. M. Janda and S. L. Abbott, “The genus Aeromonas: taxonomy, pathogenicity, and infection,” Clinical Microbiology Reviews, vol. 23, no. 1, pp. 35–73, 2010.
[17]  S. M. Kirov, “Aeromonas and Plesiomonas species,” in Food Microbiology, Fundamentals and Frontiers, M. P. Doyle, L. R. Beuchat, and T. J. Montville, Eds., pp. 265–287, ASM Press, Washington, DC, USA, 1997.
[18]  K. N. Majeed, A. F. Egan, and I. C. Mac Rae, “Production of exotoxins by Aeromonas spp. at 5°C,” Journal of Applied Bacteriology, vol. 69, no. 3, pp. 332–337, 1990.
[19]  J. M. Janda, “Recent advances in the study of the taxonomy, pathogenicity, and infectious syndromes associated with the genus Aeromonas,” Clinical Microbiology Reviews, vol. 4, no. 4, pp. 397–410, 1991.
[20]  S. W. Joseph and A. Carnahan, “The isolation, identification, and systematics of the motile Aeromonas species,” Annual Review of Fish Diseases, vol. 4, pp. 315–343, 1994.
[21]  B. Austin, D. A. Austin, I. Dalsgaard et al., “Characterization of atypical Aeromonas salmonicida by different methods,” Systematic and Applied Microbiology, vol. 21, no. 1, pp. 50–64, 1998.
[22]  J. M. Janda and S. L. Abbott, “Evolving concepts regarding the genus Aeromonas: an expanding panorama of species, disease presentations, and unanswered questions,” Clinical Infectious Diseases, vol. 27, no. 2, pp. 332–344, 1998.
[23]  J. Vila, J. Ruiz, F. Gallardo et al., “Aeromonas spp. and traveler's diarrhea: clinical features and antimicrobial resistance,” Emerging Infectious Diseases, vol. 9, no. 5, pp. 552–555, 2003.
[24]  S. M. Presley, T. R. Rainwater, G. P. Austin et al., “Assessment of pathogens and toxicants in New Orleans, LA following Hurricane Katrina,” Environmental Science and Technology, vol. 40, no. 2, pp. 468–474, 2006.
[25]  H. B. Yu, Y. L. Zhang, Y. L. Lau et al., “Identification and characterization of putative virulence genes and gene clusters in Aeromonas hydrophila PPD134/91,” Applied and Environmental Microbiology, vol. 71, no. 8, pp. 4469–4477, 2005.
[26]  M. E. Reith, R. K. Singh, B. Curtis et al., “The genome of Aeromonas salmonicida subsp. salmonicida A449: insights into the evolution of a fish pathogen,” BMC Genomics, vol. 9, article 427, 2008.
[27]  R. Seshadri, S. W. Joseph, A. K. Chopra et al., “Genome sequence of Aeromonas hydrophila ATCC 7966T: jack of all trades,” Journal of Bacteriology, vol. 188, no. 23, pp. 8272–8282, 2006.
[28]  Y. Li, Y. Liu, Z. Zhou et al., “Complete genome sequence of Aeromonas veronii strain B565,” Journal of Bacteriology, vol. 193, no. 13, pp. 3389–3390, 2011.
[29]  I. S. Roberts, “The biochemistry and genetics of capsular polysaccharide production in bacteria,” Annual Review of Microbiology, vol. 50, pp. 285–315, 1996.
[30]  S. Merino and J. M. Tomás, “Bacterial capsules and evasion of immune responses,” in Encyclopedia of Life Sciences, John Wiley & Sons, New York, NY, USA, 3rd edition, 2010, http://www.els.net/.
[31]  Z. Wang, S. Larocque, E. Vinogradov et al., “Structural studies of the capsular polysaccharide and lipopolysaccharide O-antigen of Aeromonas salmonicida strain 80204-1 produced under in vitro and in vivo growth conditions,” European Journal of Biochemistry, vol. 271, no. 22, pp. 4507–4516, 2004.
[32]  D. H. Shaw, Y. Z. Lee, M. J. Squires, and O. Luderitz, “Structural studies on the O-antigen of Aeromonas salmonicida,” European Journal of Biochemistry, vol. 131, no. 3, pp. 633–638, 1983.
[33]  A. Garrote, R. Bonet, S. Merino, M. D. Simon-Pujol, and F. Congregado, “Occurrence of a capsule in Aeromonas salmonicida,” FEMS Microbiology Letters, vol. 74, no. 2-3, pp. 127–131, 1992.
[34]  R. A. Gardu?o, J. C. Thornton, and W. W. Kay, “Aeromonas salmonicida grown in vivo,” Infection and Immunity, vol. 61, no. 9, pp. 3854–3862, 1993.
[35]  S. Merino, S. Alberti, and J. M. Tomás, “Aeromonas salmonicida resistance to complement-mediated killing,” Infection and Immunity, vol. 62, no. 12, pp. 5483–5490, 1994.
[36]  S. Merino, A. Aguilar, X. Rubires, D. Simon-Pujol, F. Congregado, and J. M. Tomás, “The role of the capsular polysaccharide of Aeromonas salmonicida in the adherence and invasion of fish cell lines,” FEMS Microbiology Letters, vol. 142, no. 2-3, pp. 185–189, 1996.
[37]  M. J. Martínez, D. Simon-Pujol, F. Congregado, S. Merino, X. Rubires, and J. M. Tomás, “The presence of capsular polysaccharide in mesophilic Aeromonas hydrophila serotypes O:11 and O:34,” FEMS Microbiology Letters, vol. 128, no. 1, pp. 69–74, 1995.
[38]  Y. L. Zhang, E. Arakawa, and K. Y. Leung, “Novel Aeromonas hydrophila PPD134/91 genes involved in O-antigen and capsule biosynthesis,” Infection and Immunity, vol. 70, no. 5, pp. 2326–2335, 2002.
[39]  Y. L. Zhang, Y. L. Lau, E. Arakawa, and K. Y. Leung, “Detection and genetic analysis of group II capsules in Aeromonas hydrophila,” Microbiology, vol. 149, no. 4, pp. 1051–1060, 2003.
[40]  A. S. Ghosh and K. D. Young, “Helical disposition of proteins and lipopolysaccharide in the outer membrane of Escherichia coli,” Journal of Bacteriology, vol. 187, no. 6, pp. 1913–1922, 2005.
[41]  H. Nikaido, “Outer membrane,” in Escherichia coli and Salmonella: Cellular and Molecular Biology, F. C. Neidhardt, R. Curtiss, J. L. Ingraham et al., Eds., pp. 29–47, ASM Press, Washington, DC, USA, 1996.
[42]  C. Whitfield and M. A. Valvano, “Biosynthesis and expression of cell-surface polysaccharides in gram-negative bacteria,” Advances in Microbial Physiology, vol. 35, pp. 135–246, 1993.
[43]  G. Pluschke, A. Mercer, and B. Kusecek, “Induction of bacteremia in newborn rats by Escherichia coli K1 is correlated with only certain O (lipopolysaccharide) antigen types,” Infection and Immunity, vol. 39, no. 2, pp. 599–608, 1983.
[44]  G. Pluschke and M. Achtman, “Degree of antibody-independent activation of the classical complement pathway by K1 Escherichia coli differs with O antigen type and correlates with virulence of meningitis in newborns,” Infection and Immunity, vol. 43, no. 2, pp. 684–692, 1984.
[45]  K. A. Joiner, “Complement evasion by bacteria and parasites,” Annual Review of Microbiology, vol. 42, pp. 201–230, 1988.
[46]  C. R. H. Raetz and C. Whitfield, “Lipopolysaccharide endotoxins,” Annual Review of Biochemistry, vol. 71, pp. 635–700, 2002.
[47]  G. Samuel and P. Reeves, “Biosynthesis of O-antigens: genes and pathways involved in nucleotide sugar precursor synthesis and O-antigen assembly,” Carbohydrate Research, vol. 338, no. 23, pp. 2503–2519, 2003.
[48]  M. A. Valvano, “Export of O-specific lipopolysaccharide,” Frontiers in Bioscience, vol. 8, pp. s452–s471, 2003.
[49]  M. A. Valvano, in Comprehensive Natural Products Chemistry II. Vol. 6: Carbohydrates, Nucleosides and Nucleic Acids, L. N. Mander and H. W. Liu, Eds., pp. 297–314, Elsevier, Oxford, UK, 2010.
[50]  N. P. Price and F. A. Momany, “Modeling bacterial UDP-HexNAc: polyprenol-P HexNAc-1-P transferases,” Glycobiology, vol. 15, no. 9, pp. 29–42, 2005.
[51]  S. Merino, N. Jiménez, R. Molero, L. Bouamama, M. Regué, and J. M. Tomás, “A UDP-HexNAc:polyprenol-P GalNAc-1-P transferase (WecP) representing a new subgroup of the enzyme family,” Journal of Bacteriology, vol. 193, no. 8, pp. 1943–1952, 2011.
[52]  J. Cohen, “The immunopathogenesis of sepsis,” Nature, vol. 420, no. 6917, pp. 885–891, 2002.
[53]  O. Lüderitz, C. Galanos, V. Lehmann, H. Mayer, E. T. Rietschel, and J. Weckesser, “Chemical structure and biological activities of lipid A's from various bacterial families,” Naturwissenschaften, vol. 65, no. 11, pp. 578–585, 1978.
[54]  Z. Wang, J. Li, and E. Altman, “Structural characterization of the lipid A region of Aeromonas salmonicida subsp. salmonicida lipopolysaccharide,” Carbohydrate Research, vol. 341, no. 17, pp. 2816–2825, 2006.
[55]  L. Cuthbertson, V. Kos, and C. Whitfield, “ABC transporters involved in export of cell surface glycoconjugates,” Microbiology and Molecular Biology Reviews, vol. 74, no. 3, pp. 341–362, 2010.
[56]  Y. A. Knirel, E. Vinogradov, N. Jiménez, S. Merino, and J. M. Tomás, “Structural studies on the R-type lipopolysaccharide of Aeromonas hydrophila,” Carbohydrate Research, vol. 339, no. 4, pp. 787–793, 2004.
[57]  Z. Wang, J. Li, E. Vinogradov, and E. Altman, “Structural studies of the core region of Aeromonas salmonicida subsp. salmonicida lipopolysaccharide,” Carbohydrate Research, vol. 341, no. 1, pp. 109–117, 2006.
[58]  N. Jiménez, R. Canals, A. Lacasta et al., “Molecular analysis of three Aeromonas hydrophila AH-3 (serotype O34) lipopolysaccharide core biosynthesis gene clusters,” Journal of Bacteriology, vol. 190, no. 9, pp. 3176–3184, 2008.
[59]  N. Jiménez, A. Lacasta, S. Vilches et al., “Genetics and proteomics of Aeromonas salmonicida lipopolysaccharide core biosynthesis,” Journal of Bacteriology, vol. 191, no. 7, pp. 2228–2236, 2009.
[60]  C. R. H. Raetz, “Bacterial lipopolysaccharides: a remarkable family of bioactive macroamphiphiles,” in Escherichia coli and Salmonella: Cellular and Molecular Biology, F. C. Neidhardt, R. Curtiss III, J. L. Ingraham et al., Eds., pp. 1035–1063, ASM Press, Washington, DC, USA, 2nd edition, 1996.
[61]  R. Sakazaki and T. Shimada, “O-serogrouping scheme for mesophilic Aeromonas strains,” Japanese Journal of Medical Science and Biology, vol. 37, no. 5-6, pp. 247–255, 1984.
[62]  L. V. Thomas, R. J. Gross, T. Cheasty, and B. Rowe, “Extended serogrouping scheme for motile, mesophilic Aeromonas species,” Journal of Clinical Microbiology, vol. 28, no. 5, pp. 980–984, 1990.
[63]  J. M. Janda, S. L. Abbott, S. Khashe, G. H. Kellogg, and T. Shimada, “Further studies on biochemical characteristics and serologic properties of the genus Aeromonas,” Journal of Clinical Microbiology, vol. 34, no. 8, pp. 1930–1933, 1996.
[64]  S. Merino, S. Camprubi, and J. M. Tomás, “Effect of growth temperature on outer membrane components and virulence of Aeromonas hydrophila strains of serotype O:34,” Infection and Immunity, vol. 60, no. 10, pp. 4343–4349, 1992.
[65]  A. Aguilar, S. Merino, X. Rubires, and J. M. Tomás, “Influence of osmolarity on lipopolysaccharides and virulence of Aeromonas hydrophila serotype O:34 strains grown at 37°C,” Infection and Immunity, vol. 65, no. 4, pp. 1245–1250, 1997.
[66]  S. Merino, X. Rubires, A. Aguilar et al., “Mesophilic Aeromonas sp. serogroup O:11 resistance to complement- mediated killing,” Infection and Immunity, vol. 64, no. 12, pp. 5302–5309, 1996.
[67]  Y. A. Knirel, A. S. Shashkov, S. N. Senchenkova, S. Merino, and J. M. Tomás, “Structure of the O-polysaccharide of Aeromonas hydrophila O:34; A case of random O-acetylation of 6-deoxy-L-talose,” Carbohydrate Research, vol. 337, no. 15, pp. 1381–1386, 2002.
[68]  Z. Wang, E. Vinogradov, S. Larocque, B. A. Harrison, J. Li, and E. Altman, “Structural and serological characterization of the O-chain polysaccharide of Aeromonas salmonicida strains A449, 80204 and 80204-1,” Carbohydrate Research, vol. 340, no. 4, pp. 693–700, 2005.
[69]  J. S. G. Dooley, R. Lallier, D. H. Shaw, and T. J. Trust, “Electrophoretic and immunochemical analyses of the lipopolysaccharides from various strains of Aeromonas hydrophila,” Journal of Bacteriology, vol. 164, no. 1, pp. 263–269, 1985.
[70]  Z. Wang, X. Liu, J. Li, and E. Altman, “Structural characterization of the O-chain polysaccharide of Aeromonas caviae ATCC 15468 lipopolysaccharide,” Carbohydrate Research, vol. 343, no. 3, pp. 483–488, 2008.
[71]  N. Jiménez, R. Canals, M. T. Saló, S. Vilches, S. Merino, and J. M. Tomás, “The Aeromonas hydrophila?? O34 gene cluster: genetics and temperature regulation,” Journal of Bacteriology, vol. 190, no. 12, pp. 4198–4209, 2008.
[72]  B. Beutler, K. Hoebe, X. Du, and R. J. Ulevitch, “How we detect microbes and respond to them: the Toll-like receptors and their transducers,” Journal of Leukocyte Biology, vol. 74, no. 4, pp. 479–485, 2003.
[73]  M. Gumenscheimer, I. Mitov, C. Galanos, and M. A. Freudenberg, “Beneficial or deleterious effects of a preexisting hypersensitivity to bacterial components on the course and outcome of infection,” Infection and Immunity, vol. 70, no. 10, pp. 5596–5603, 2002.
[74]  Y. Nagai, S. Akashi, M. Nagafuku et al., “Essential role of MD-2 in LPS responsiveness and TLR4 distribution,” Nature Immunology, vol. 3, no. 7, pp. 667–672, 2002.
[75]  L. Hamann, C. Alexander, C. Stamme, U. Z?hringer, and R. R. Schumann, “Acute-phase concentrations of lipopolysaccharide (LPS)-binding protein inhibit innate immune cell activation by different LPS chemotypes via different mechanisms,” Infection and Immunity, vol. 73, no. 1, pp. 193–200, 2005.
[76]  Z. Jiang, P. Georgel, X. Du et al., “CD14 is required for MyD88-independent LPS signaling,” Nature Immunology, vol. 6, no. 6, pp. 565–570, 2005.
[77]  M. Caroff and D. Karibian, “Structure of bacterial lipopolysaccharides,” Carbohydrate Research, vol. 338, no. 23, pp. 2431–2447, 2003.
[78]  A. Kapp, M. Freudenberg, and C. Galanos, “Induction of human granulocyte chemiluminescence by bacterial lipopolysaccharides,” Infection and Immunity, vol. 55, no. 3, pp. 758–761, 1987.
[79]  M. A. Freudenberg and C. Galanos, “Metabolism of LPS in vivo,” in Bacterial Endotoxic Lipopolysaccharides, Immunopharmacology and Pathophysiology, J. L. Ryan and D. C. Morrison, Eds., pp. 275–294, CRC Press, Boca Raton, Fla, USA, 1992.
[80]  D. C. Morrison, “Bacterial endotoxins and pathogenesis,” Reviews of Infectious Diseases, vol. 5, pp. S733–S747, 1983.
[81]  S. Merino, X. Rubires, S. Knochel, and J. M. Tomás, “Emerging pathogens: Aeromonas spp.,” International Journal of Food Microbiology, vol. 28, no. 2, pp. 157–168, 1995.
[82]  S. Albertí, D. álvarez, S. Merino et al., “Analysis of complement C3 deposition and degradation on Klebsiella pneumoniae,” Infection and Immunity, vol. 64, no. 11, pp. 4726–4732, 1996.
[83]  H. M. Kuhn, U. Meier-Dieter, and H. Mayer, “ECA, the enterobacterial common antigen,” FEMS Microbiology Reviews, vol. 54, no. 3, pp. 195–222, 1988.
[84]  C. Whitfield, “Biosynthesis and assembly of capsular polysaccharides in Escherichia coli,” Annual Review of Biochemistry, vol. 75, pp. 39–68, 2006.
[85]  W. D. Grant, I. W. Sutherland, and J. F. Wilkinson, “Exopolysaccharide colanic acid and its occurrence in the Enterobacteriaceae,” Journal of Bacteriology, vol. 100, no. 3, pp. 1187–1193, 1969.
[86]  X. Wang, J. F. Preston III, and T. Romeo, “The pgaABCD locus of Escherichia coli promotes the synthesis of a polysaccharide adhesin required for biofilm formation,” Journal of Bacteriology, vol. 186, no. 9, pp. 2724–2734, 2004.
[87]  X. Zogaj, M. Nimtz, M. Rohde, W. Bokranz, and U. R?mling, “The multicellular morphotypes of Salmonella typhimurium and Escherichia coli produce cellulose as the second component of the extracellular matrix,” Molecular Microbiology, vol. 39, no. 6, pp. 1452–1463, 2001.
[88]  S. Merino, L. Bouamama, Y. A. Knirel, S. N. Senchenkova, M. Regué, and J. M. Tomás, “Aeromonas surface glucan attached through the O-Antigen ligase represents a new way to obtain UDP-Glucose,” PLoS ONE, vol. 7, no. 5, article e35707, 2012.
[89]  K. Agladze, X. Wang, and T. Romeo, “Spatial periodicity of Escherichia coli K-12 biofilm microstructure initiates during a reversible, polar attachment phase of development and requires the polysaccharide adhesin PGA,” Journal of Bacteriology, vol. 187, no. 24, pp. 8237–8246, 2005.
[90]  I. W. Sutherland, “Biofilm exopolysaccharides: a strong and sticky framework,” Microbiology, vol. 147, no. 1, pp. 3–9, 2001.
[91]  J. Kumari and P. K. Sahoo, “Dietary β-1,3 glucan potentiates innate immunity and disease resistance of Asian catfish, Clarias batrachus (L.),” Journal of Fish Diseases, vol. 29, no. 2, pp. 95–101, 2006.
[92]  I. Rodríguez, R. Chamorro, B. Novoa, and A. Figueras, “β-Glucan administration enhances disease resistance and some innate immune responses in zebrafish (Danio rerio),” Fish and Shellfish Immunology, vol. 27, no. 2, pp. 369–373, 2009.
[93]  T. J. Beveridge, P. H. Pouwels, M. Sara, et al., “Functions of S-layers,” FEMS Microbiology Reviews, vol. 20, pp. 99–149, 1997.
[94]  W. W. Kay, J. T. Buckley, E. E. Ishiguro, B. M. Phipps, J. P. Monette, and T. J. Trust, “Purification and disposition of a surface protein associated with virulence of Aeromonas salmonicida,” Journal of Bacteriology, vol. 147, no. 3, pp. 1077–1084, 1981.
[95]  W. W. Kay, B. M. Phipps, E. E. Ishiguro, and T. J. Trust, “Surface layer virulence A-proteins from Aeromonas salmonicida strains,” Canadian Journal of Biochemistry and Cell Biology, vol. 62, no. 11, pp. 1064–1071, 1984.
[96]  R. J. Belland and T. J. Trust, “Cloning of the gene for the surface array protein of Aeromonas salmonicida and evidence linking loss of expression with genetic deletion,” Journal of Bacteriology, vol. 169, no. 9, pp. 4086–4091, 1987.
[97]  J. S. Dooley and T. J. Trust, “Surface protein composition of Aeromonas hydrophila strains virulent for fish: identification of a surface array protein,” Journal of Bacteriology, vol. 170, no. 2, pp. 499–506, 1988.
[98]  B. Noonan and T. J. Trust, “The synthesis, secretion and role in virulence of the paracrystalline surface protein layers of Aeromonas salmonicida and A. hydrophila,” FEMS Microbiology Letters, vol. 154, no. 1, pp. 1–7, 1997.
[99]  C. Esteve, E. Alcaide, R. Canals et al., “Pathogenic Aeromonas hydrophila serogroup O:14 and O:81 strains with an S layer,” Applied and Environmental Microbiology, vol. 70, no. 10, pp. 5898–5904, 2004.
[100]  S. Chu, S. Cavaignac, J. Feutrier et al., “Structure of the tetragonal surface virulence array protein and gene of Aeromonas salmonicida,” The Journal of Biological Chemistry, vol. 266, no. 23, pp. 15258–15265, 1991.
[101]  W. W. Kay, B. M. Phipps, E. E. Ishiguro, and T. J. Trust, “Porphyrin binding by the surface array virulence protein of Aeromonas salmonicida,” Journal of Bacteriology, vol. 164, no. 3, pp. 1332–1336, 1985.
[102]  B. M. Phipps and W. W. Kay, “Immunoglobulin binding by the regular surface array of Aeromonas salmonicida,” The Journal of Biological Chemistry, vol. 263, no. 19, pp. 9298–9303, 1988.
[103]  P. Messner, K. Steiner, K. Zarschler, and C. Sch?ffer, “S-layer nanoglycobiology of bacteria,” Carbohydrate Research, vol. 343, no. 12, pp. 1934–1951, 2008.
[104]  C. Sch?ffer and P. Messner, “Surface-layer glycoproteins: an example for the diversity of bacterial glycosylation with promising impacts on nanobiotechnology,” Glycobiology, vol. 14, no. 8, pp. 31–42, 2004.
[105]  P. Messner, “Prokaryotic glycoproteins: unexplored but important,” Journal of Bacteriology, vol. 186, no. 9, pp. 2517–2519, 2004.
[106]  R. P. Kokka, N. A. Vedros, and J. M. Janda, “Electrophoretic analysis of the surface components of autoagglutinating surface array protein-positive and surface array protein-negative Aeromonas hydrophila and Aeromonas sobria,” Journal of Clinical Microbiology, vol. 28, no. 10, pp. 2240–2247, 1990.
[107]  K. G. Wooldridge and P. H. Williams, “Iron uptake mechanisms of pathogenic bacteria,” FEMS Microbiology Reviews, vol. 12, no. 4, pp. 325–348, 1993.
[108]  A. Stintzi and K. N. Raymond, “Amonabactin-mediated iron acquisition from transferrin and lactoferrin by Aeromonas hydrophila: direct measurement of individual microscopic rate constants,” Journal of Biological Inorganic Chemistry, vol. 5, no. 1, pp. 57–66, 2000.
[109]  B. R. Beyers, G. Massad, S. Barghouthi, and J. E. L. Arceneaux, “Iron acquisition and virulence in the motile aeromonads: siderophore-dependent and -independent systems,” Experientia, vol. 47, no. 5, pp. 416–418, 1991.
[110]  J. R. Telford and K. N. Raymond, “Coordination chemistry of the amonabactins, Bis(catecholate) siderophores from Aeromonas hydrophila,” Inorganic Chemistry, vol. 37, no. 18, pp. 4578–4583, 1998.
[111]  G. Massad, J. E. L. Arceneaux, and B. R. Byers, “Diversity of siderophore genes encoding biosynthesis of 2,3- dihydroxybenzoic acid in Aeromonas spp,” BioMetals, vol. 7, no. 3, pp. 227–236, 1994.
[112]  M. Najimi, M. L. Lemos, and C. R. Osorio, “Identification of iron regulated genes in the fish pathogen Aeromonas salmonicida subsp. salmonicida: genetic diversity and evidence of conserved iron uptake systems,” Veterinary Microbiology, vol. 133, no. 4, pp. 377–382, 2009.
[113]  R. O. Ebanks, A. Dacanay, M. Goguen, D. M. Pinto, and N. W. Ross, “Differential proteomic analysis of Aeromonas salmonicida outer membrane proteins in response to low iron and in vivo growth conditions,” Proteomics, vol. 4, no. 4, pp. 1074–1085, 2004.
[114]  M. Najimi, M. L. Lemos, and C. R. Osorio, “Identification of heme uptake genes in the fish pathogen Aeromonas salmonicida subsp. salmonicida,” Archives of Microbiology, vol. 190, no. 4, pp. 439–449, 2008.
[115]  V. Braun, “Bacterial iron transport related to virulence,” Contributions to Microbiology, vol. 12, pp. 210–233, 2005.
[116]  V. De Lorenzo, S. Wee, M. Herrero, and J. B. Neilands, “Operator sequences of the aerobactin operon of plasmid colV-K30 binding the ferric uptake regulation (fur) repressor,” Journal of Bacteriology, vol. 169, no. 6, pp. 2624–2630, 1987.
[117]  I. D. Hirst and A. E. Ellis, “Iron-regulated outer membrane proteins of Aeromonas salmonicida are important protective antigens in Atlantic salmon against furunculosis,” Fish and Shellfish Immunology, vol. 4, no. 1, pp. 29–45, 1994.
[118]  T. Asao, Y. Kinoshita, S. Kozaki, T. Uemura, and G. Sakaguchi, “Purification and some properties of Aeromonas hydrophila hemolysin,” Infection and Immunity, vol. 46, no. 1, pp. 122–127, 1984.
[119]  A. K. Chopra and C. W. Houston, “Enterotoxins in Aeromonas-associated gastroenteritis,” Microbes and Infection, vol. 1, no. 13, pp. 1129–1137, 1999.
[120]  M. R. Ferguson, X. J. Xu, C. W. Houston et al., “Hyperproduction, purification, and mechanism of action of the cytotoxic enterotoxin produced by Aeromonas hydrophila,” Infection and Immunity, vol. 65, no. 10, pp. 4299–4308, 1997.
[121]  X. J. Xu, M. R. Ferguson, V. L. Popov, C. W. Houston, J. W. Peterson, and A. K. Chopra, “Role of a cytotoxic enterotoxin in Aeromonas-mediated infections: development of transposon and isogenic mutants,” Infection and Immunity, vol. 66, no. 8, pp. 3501–3509, 1998.
[122]  C. L. Galindo, C. Gutierrez Jr., and A. K. Chopra, “Potential involvement of galectin-3 and SNAP23 in Aeromonas hydrophila cytotoxic enterotoxin-induced host cell apoptosis,” Microbial Pathogenesis, vol. 40, no. 2, pp. 56–68, 2006.
[123]  S. P. Howard and J. T. Buckley, “Molecular cloning and expression in Escherichia coli of the structural gene for the hemolytic toxin aerolysin from Aeromonas hydrophila,” MGG Molecular & General Genetics, vol. 204, no. 2, pp. 289–295, 1986.
[124]  J. T. Buckley, S. P. Howard, A. K. Chopra, and C. W. Houston, “The cytotoxic enterotoxin of Aeromonas hydrophila is aerolysin (multiple letters),” Infection and Immunity, vol. 67, no. 1, pp. 466–467, 1999.
[125]  N. Tanoue, A. Takahashi, K. Okamoto et al., “A pore-forming toxin produced by Aeromonas sobria activates cAMP-dependent C1-secretory pathways to cause diarrhea,” FEMS Microbiology Letters, vol. 242, no. 2, pp. 195–201, 2005.
[126]  J. Sha, E. V. Kozlova, and A. K. Chopra, “Role of various enterotoxins in Aeromonas hydrophila-induced gastroenteritis: generation of enterotoxin gene-deficient mutants and evaluation of their enterotoxic activity,” Infection and Immunity, vol. 70, no. 4, pp. 1924–1935, 2002.
[127]  A. K. Chopra, X. J. Xu, D. Ribardo et al., “The cytotoxic enterotoxin of Aeromonas hydrophila induces proinflammatory cytokine production and activates arachidonic acid metabolism in macrophages,” Infection and Immunity, vol. 68, no. 5, pp. 2808–2818, 2000.
[128]  R. Shenkar and E. Abraham, “Mechanisms of lung neutrophil activation after hemorrhage or endotoxemia: roles of reactive oxygen intermediates, NF-κB, and cyclic AMP response element binding protein,” Journal of Immunology, vol. 163, no. 2, pp. 954–962, 1999.
[129]  S. P. Howard, W. J. Garland, M. J. Green, and J. T. Buckley, “Nucleotide sequence of the gene for the hole-forming toxin aerolysin of Aeromonas hydrophila,” Journal of Bacteriology, vol. 169, no. 6, pp. 2869–2871, 1987.
[130]  T. Chakraborty, M. A. Montenegro, S. C. Sanyal, et al., “Cloning of enterotoxin gene from Aeromonas hydrophila provides conclusive evidence of production of a cytotonic enterotoxin,” Infection and Immunity, vol. 46, no. 2, pp. 435–441, 1984.
[131]  J. Potomski, V. Burke, J. Robinson, D. Fumarola, and G. Miragliotta, “Aeromonas cytotonic enterotoxin cross reactive with cholera toxin,” Journal of Medical Microbiology, vol. 23, no. 2, pp. 179–186, 1987.
[132]  M. Thelestam and A. Ljungh, “Membrane-damaging and cytotoxic effects on human fibroblasts of alpha- and beta-hemolysins from Aeromonas hydrophila,” Infection and Immunity, vol. 34, no. 3, pp. 949–956, 1981.
[133]  K. Y. Leung and R. M. W. Stevenson, “Tn5-induced protease-deficient strains of Aeromonas hydrophila with reduced virulence for fish,” Infection and Immunity, vol. 56, no. 10, pp. 2639–2644, 1988.
[134]  J. M. Pemberton, S. P. Kidd, and R. Schmidt, “Secreted enzymes of Aeromonas,” FEMS Microbiology Letters, vol. 152, no. 1, pp. 1–10, 1997.
[135]  Y. C. Chuang, S. F. Chiou, J. H. Su, M. L. Wu, and M. C. Chang, “Molecular analysis and expression of the extracellular lipase of Aeromonas hydrophila MCC-2,” Microbiology, vol. 143, no. 3, pp. 803–812, 1997.
[136]  S. Merino, A. Aguilar, M. M. Nogueras, M. Regue, S. Swift, and J. M. Tomás, “Cloning, sequencing, and role in virulence of two phospholipases (A1 and C) from mesophilic Aeromonas sp. serogroup O:34,” Infection and Immunity, vol. 67, no. 8, pp. 4008–4013, 1999.
[137]  I. R. Henderson, F. Navarro-Garcia, M. Desvaux, R. C. Fernandez, and D. Ala'Aldeen, “Type V protein secretion pathway: the autotransporter story,” Microbiology and Molecular Biology Reviews, vol. 68, no. 4, pp. 692–744, 2004.
[138]  M. Kostakioti, C. L. Newman, D. G. Thanassi, and C. Stathopoulos, “Mechanisms of protein export across the bacterial outer membrane,” Journal of Bacteriology, vol. 187, no. 13, pp. 4306–4314, 2005.
[139]  T. Palmer and B. C. Berks, “Moving folded proteins across the bacterial cell membrane,” Microbiology, vol. 149, no. 3, pp. 547–556, 2003.
[140]  T. Michiels, P. Wattiau, R. Brasseur, J. M. Ruysschaert, and G. Cornelis, “Secretion of Yop proteins by yersiniae,” Infection and Immunity, vol. 58, no. 9, pp. 2840–2849, 1990.
[141]  J. E. Galán and A. Collmer, “Type III secretion machines: bacterial devices for protein delivery into host cells,” Science, vol. 284, no. 5418, pp. 1322–1328, 1999.
[142]  C. J. Hueck, “Type III protein secretion systems in bacterial pathogens of animals and plants,” Microbiology and Molecular Biology Reviews, vol. 62, no. 2, pp. 379–433, 1998.
[143]  S. A. Lloyd, M. Norman, R. Rosqvist, and H. Wolf-Watz, “Yersinia YopE is targeted for type III secretion by N-terminal, not mRNA, signals,” Molecular Microbiology, vol. 39, no. 2, pp. 520–531, 2001.
[144]  S. E. Burr, K. Stuber, T. Wahli, and J. Frey, “Evidence for a type III secretion system in Aeromonas salmonicida subsp. salmonicida,” Journal of Bacteriology, vol. 184, no. 21, pp. 5966–5970, 2002.
[145]  H. B. Yu, P. S. S. Rao, H. C. Lee et al., “A type III secretion system is required for Aeromonas hydrophila AH-1 pathogenesis,” Infection and Immunity, vol. 72, no. 3, pp. 1248–1256, 2004.
[146]  S. Vilches, C. Urgell, S. Merino et al., “Complete type III secretion system of a mesophilic Aeromonas hydrophila strain,” Applied and Environmental Microbiology, vol. 70, no. 11, pp. 6914–6919, 2004.
[147]  J. Sha, L. Pillai, A. A. Fadl, C. L. Galindo, T. E. Erova, and A. K. Chopra, “The type III secretion system and cytotoxic enterotoxin alter the virulence of Aeromonas hydrophila,” Infection and Immunity, vol. 73, no. 10, pp. 6446–6457, 2005.
[148]  S. E. Burr, K. Stuber, and J. Frey, “The ADP-ribosylating toxin, AexT, from Aeromonas salmonicida subsp. salmonicida is translocated via a type III secretion pathway,” Journal of Bacteriology, vol. 185, no. 22, pp. 6583–6591, 2003.
[149]  D. Fehr, C. Casanova, A. Liverman et al., “AopP, a type III effector protein of Aeromonas salmonicida, inhibits the NF-κB signalling pathway,” Microbiology, vol. 152, no. 9, pp. 2809–2818, 2006.
[150]  D. Fehr, S. E. Burr, M. Gibert, J. D'Alayer, J. Frey, and M. R. Popoff, “Aeromonas exoenzyme T of Aeromonas salmonicida is a bifunctional protein that targets the host cytoskeleton,” The Journal of Biological Chemistry, vol. 282, no. 39, pp. 28843–28852, 2007.
[151]  S. Vilches, M. Wilhelms, H. B. Yu, K. Y. Leung, J. M. Tomás, and S. Merino, “Aeromonas hydrophila AH-3 AexT is an ADP-ribosylating toxin secreted through the type III secretion system,” Microbial Pathogenesis, vol. 44, no. 1, pp. 1–12, 2008.
[152]  J. Sha, S. F. Wang, G. Suarez et al., “Further characterization of a type III secretion system (T3SS) and of a new effector protein from a clinical isolate of Aeromonas hydrophila-part I,” Microbial Pathogenesis, vol. 43, no. 4, pp. 127–146, 2007.
[153]  S. Pukatzki, A. T. Ma, D. Sturtevant et al., “Identification of a conserved bacterial protein secretion system in Vibrio cholerae using the Dictyostelium host model system,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 5, pp. 1528–1533, 2006.
[154]  S. Pukatzki, A. T. Ma, A. T. Revel, D. Sturtevant, and J. J. Mekalanos, “Type VI secretion system translocates a phage tail spike-like protein into target cells where it cross-links actin,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 39, pp. 15508–15513, 2007.
[155]  S. Pukatzki, S. B. McAuley, and S. T. Miyata, “The type VI secretion system: translocation of effectors and effector-domains,” Current Opinion in Microbiology, vol. 12, no. 1, pp. 11–17, 2009.
[156]  S. Schwarz, R. D. Hood, and J. D. Mougous, “What is type VI secretion doing in all those bugs?” Trends in Microbiology, vol. 18, no. 12, pp. 531–537, 2010.
[157]  C. S. Bernard, Y. R. Brunet, E. Gueguen, and E. Cascales, “Nooks and crannies in type VI secretion regulation,” Journal of Bacteriology, vol. 192, no. 15, pp. 3850–3860, 2010.
[158]  G. Suarez, J. C. Sierra, J. Sha et al., “Molecular characterization of a functional type VI secretion system from a clinical isolate of Aeromonas hydrophila,” Microbial Pathogenesis, vol. 44, no. 4, pp. 344–361, 2008.
[159]  S. Han, J. A. Craig, C. D. Putnam, N. B. Carozzi, and J. A. Tainer, “Evolution and mechanism from structures of an ADP-ribosylating toxin and NAD complex,” Nature Structural Biology, vol. 6, no. 10, pp. 932–936, 1999.
[160]  V. Burke, M. Cooper, and J. Robinson, “Hemagglutination patterns of Aeromonas spp. in relation to biotype and source,” Journal of Clinical Microbiology, vol. 19, no. 1, pp. 39–43, 1984.
[161]  T. Proft and E. N. Baker, “Pili in Gram-negative and Gram-positive bacteria—structure, assembly and their role in disease,” Cellular and Molecular Life Sciences, vol. 66, no. 4, pp. 613–635, 2009.
[162]  S. M. Kirov, I. Jacobs, L. J. Hayward, and R. H. Hapin, “Electron microscopic examination of factors influencing the expression of filamentous surface structures on clinical and environmental isolates of Aeromonas veronii biotype sobria,” Microbiology and Immunology, vol. 39, no. 5, pp. 329–338, 1995.
[163]  C. M. Pepe, M. W. Eklund, and M. S. Strom, “Cloning of an Aeromonas hydrophila type IV pilus biogenesis gene cluster: complementation of pilus assembly functions and characterization of a type IV leader peptidase/N-methyltransferase required for extracellular protein secretion,” Molecular Microbiology, vol. 19, no. 4, pp. 857–869, 1996.
[164]  T. C. Barnett, S. M. Kirov, M. S. Strom, and K. Sanderson, “Aeromonas spp. possess at least two distinct type IV pilus families,” Microbial Pathogenesis, vol. 23, no. 4, pp. 241–247, 1997.
[165]  S. M. Kirov, T. C. Barnett, C. M. Pepe, M. S. Strom, and M. John Albert, “Investigation of the role of type IV Aeromonas pilus (Tap) in the pathogenesis of Aeromonas gastrointestinal infection,” Infection and Immunity, vol. 68, no. 7, pp. 4040–4048, 2000.
[166]  N. Hadi, Q. Yang, T. C. Barnett, S. M. B. Tabei, S. M. Kirov, and J. G. Shaw, “Bundle-forming pilus locus of Aeromonas veronii bv. Sobria,” Infection and Immunity, vol. 80, no. 4, pp. 1351–1360, 2012.
[167]  J. M. Boyd, A. Dacanay, L. C. Knickle et al., “Contribution of type IV pili to the virulence of Aeromonas salmonicida subsp. salmonicida in Atlantic salmon (Salmo salar L.),” Infection and Immunity, vol. 76, no. 4, pp. 1445–1455, 2008.
[168]  D. M. Quinn, H. M. Atkinson, A. H. Bretag et al., “Carbohydrate-reactive, pore-forming outer membrane proteins of Aeromonas hydrophila,” Infection and Immunity, vol. 62, no. 9, pp. 4054–4058, 1994.
[169]  S. Merino and J. M. Tomás, “Lateral flagella systems,” in Pili and Flagella: Current Research and Future Trends, pp. 173–190, Caister Academic Press, Norfolk, UK, 2009.
[170]  R. M. Macnab, “How bacteria assemble flagella,” Annual Review of Microbiology, vol. 57, pp. 77–100, 2003.
[171]  L. L. McCarter, “Polar flagellar motility of the Vibrionaceae,” Microbiology and Molecular Biology Reviews, vol. 65, no. 3, pp. 445–462, 2001.
[172]  A. A. Rabaan, I. Gryllos, J. M. Tomás, and J. G. Shaw, “Motility and the polar flagellum are required for Aeromonas caviae adherence to HEp-2 cells,” Infection and Immunity, vol. 69, no. 7, pp. 4257–4267, 2001.
[173]  R. Gavín, A. A. Rabaan, S. Merino, J. M. Tomás, I. Gryllos, and J. G. Shaw, “Lateral flagella of Aeromonas species are essential for epithelial cell adherence and biofilm formation,” Molecular Microbiology, vol. 43, no. 2, pp. 383–397, 2002.
[174]  R. Canals, S. Ramirez, S. Vilches et al., “Polar flagellum biogenesis in Aeromonas hydrophila,” Journal of Bacteriology, vol. 188, no. 2, pp. 542–555, 2006.
[175]  H. C. Berg, “The rotary motor of bacterial flagella,” Annual Review of Biochemistry, vol. 72, pp. 19–54, 2003.
[176]  H. Terashima, H. Fukuoka, T. Yakushi, S. Kojima, and M. Homma, “The Vibrio motor proteins, MotX and MotY, are associated with the basal body of Na+-driven flagella and required for stator formation,” Molecular Microbiology, vol. 62, no. 4, pp. 1170–1180, 2006.
[177]  M. Wilhelms, S. Vilches, R. Molero, J. G. Shaw, J. M. Tomás, and S. Merino, “Two redundant sodium-driven stator motor proteins are involved in Aeromonas hydrophila polar flagellum rotation,” Journal of Bacteriology, vol. 191, no. 7, pp. 2206–2217, 2009.
[178]  A. V. Karlyshev, D. Linton, N. A. Gregson, and B. W. Wren, “A novel paralogous gene family involved in phase-variable flagella-mediated motility in Campylobacter jejuni,” Microbiology, vol. 148, no. 2, pp. 473–480, 2002.
[179]  R. Molero, M. Wilhelms, B. Infanzón, J. M. Tomás, and S. Merino, “Aeromonas hydrophila motY is essential for polar flagellum function, and requires coordinate expression of motX and Pom proteins,” Microbiology, vol. 157, no. 10, pp. 2772–2784, 2011.
[180]  B. J. Stewart and L. L. McCarter, “Lateral flagellar gene system of Vibrio parahaemolyticus,” Journal of Bacteriology, vol. 185, no. 15, pp. 4508–4518, 2003.
[181]  R. Canals, M. Altarriba, S. Vilches et al., “Analysis of the lateral flagellar gene system of Aeromonas hydrophila AH-3,” Journal of Bacteriology, vol. 188, no. 3, pp. 852–862, 2006.
[182]  G. S. Chilcott and K. T. Hughes, “Coupling of flagellar gene expression to flagellar assembly in Salmonella enterica serovar typhimurium and Escherichia coli,” Microbiology and Molecular Biology Reviews, vol. 64, no. 4, pp. 694–708, 2000.
[183]  N. Dasgupta, M. C. Wolfgang, A. L. Goodman et al., “A four-tiered transcriptional regulatory circuit controls flagellar biogenesis in Pseudomonas aeruginosa,” Molecular Microbiology, vol. 50, no. 3, pp. 809–824, 2003.
[184]  Y. K. Kim and L. L. McCarter, “Cross-regulation in Vibrio parahaemolyticus: compensatory activation of polar flagellar genes by the lateral flagellar regulator LafK,” Journal of Bacteriology, vol. 186, no. 12, pp. 4014–4018, 2004.
[185]  M. Wilhelms, R. Molero, J. G. Shaw, J. M. Tomás, and S. Merino, “Transcriptional hierarchy of Aeromonas hydrophila polar-flagellum genes,” Journal of Bacteriology, vol. 193, no. 19, pp. 5179–5190, 2011.
[186]  K. A. Syed, S. Beyhan, N. Correa et al., “The Vibrio cholerae flagellar regulatory hierarchy controls expression of virulence factors,” Journal of Bacteriology, vol. 191, no. 21, pp. 6555–6570, 2009.
[187]  H. C. Ramos, M. Rumbo, and J. C. Sirard, “Bacterial flagellins: mediators of pathogenicity and host immune responses in mucosa,” Trends in Microbiology, vol. 12, no. 11, pp. 509–517, 2004.
[188]  E. P. Lillehoj, B. T. Kim, and K. C. Kim, “Identification of Pseudomonas aeruginosa flagellin as an adhesin for Muc1 mucin,” American Journal of Physiology, vol. 282, no. 4, pp. L751–L756, 2002.
[189]  J. A. Girón, A. G. Torres, E. Freer, and J. B. Kaper, “The flagella of enteropathogenic Escherichia coli mediate adherence to epithelial cells,” Molecular Microbiology, vol. 44, no. 2, pp. 361–379, 2002.
[190]  F. Hayashi, K. D. Smith, A. Ozinsky et al., “The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5,” Nature, vol. 410, no. 6832, pp. 1099–1103, 2001.
[191]  A. Verma, S. K. Arora, S. K. Kuravi, and R. Ramphal, “Roles of specific amino acids in the N terminus of Pseudomonas aeruginosa flagellin and of flagellin glycosylation in the innate immune response,” Infection and Immunity, vol. 73, no. 12, pp. 8237–8246, 2005.
[192]  R. Apweiler, H. Hermjakob, and N. Sharon, “On the frequency of protein glycosylation, as deduced from analysis of the SWISS-PROT database,” Biochimica et Biophysica Acta, vol. 1473, no. 1, pp. 4–8, 1999.
[193]  S. Moens and J. Vanderleyden, “Glycoproteins in prokaryotes,” Archives of Microbiology, vol. 168, no. 3, pp. 169–175, 1997.
[194]  M. F. Mescher and J. L. Strominger, “Purification and characterization of a prokaryotic glycoprotein from the cell envelope of Halobacterium salinarium,” The Journal of Biological Chemistry, vol. 251, no. 7, pp. 2005–2014, 1976.
[195]  U. B. Sleytr, “Heterologous reattachment of regular arrays of glycoproteins on bacterial surfaces,” Nature, vol. 257, no. 5525, pp. 400–402, 1975.
[196]  U. B. Sleytr and K. J. I. Thorne, “Chemical characterization of the regularly arranged surface layers of Clostridium thermosaccharolyticum and Clostridium thermohydrosulfuricum,” Journal of Bacteriology, vol. 126, no. 1, pp. 377–383, 1976.
[197]  S. M. Logan, “Flagellar glycosylation—a new component of the motility repertoire?” Microbiology, vol. 152, no. 5, pp. 1249–1262, 2006.
[198]  C. M. Szymanski, Y. Ruijin, C. P. Ewing, T. J. Trust, and P. Guerry, “Evidence for a system of general protein glycosylation in Campylobacter jejuni,” Molecular Microbiology, vol. 32, no. 5, pp. 1022–1030, 1999.
[199]  H. Nothaft and C. M. Szymanski, “Protein glycosylation in bacteria: sweeter than ever,” Nature Reviews Microbiology, vol. 8, no. 11, pp. 765–778, 2010.
[200]  F. A. Samatey, K. Imada, S. Nagashima et al., “Structure of the bacterial flagellar protofilament and implications for a switch for supercoiling,” Nature, vol. 410, no. 6826, pp. 331–337, 2001.
[201]  D. J. McNally, J. P. M. Hui, A. J. Aubry et al., “Functional characterization of the flagellar glycosylation locus in Campylobacter jejuni 81-176 using a focused metabolomics approach,” The Journal of Biological Chemistry, vol. 281, no. 27, pp. 18489–18498, 2006.
[202]  S. M. Logan, J. P. M. Hui, E. Vinogradov et al., “Identification of novel carbohydrate modifications on Campylobacter jejuni 11168 flagellin using metabolomics-based approaches,” FEBS Journal, vol. 276, no. 4, pp. 1014–1023, 2009.
[203]  C. M. Szymanski, S. M. Logan, D. Linton, and B. W. Wren, “Campylobacter—a tale of two protein glycosylation systems,” Trends in Microbiology, vol. 11, no. 5, pp. 233–238, 2003.
[204]  I. C. Schoenhofen, V. V. Lunin, J. P. Julien et al., “Structural and functional characterization of PseC, an aminotransferase involved in the biosynthesis of pseudaminic acid, an essential flagellar modification in Helicobacter pylori,” The Journal of Biological Chemistry, vol. 281, no. 13, pp. 8907–8916, 2006.
[205]  P. Guerry, C. P. Ewing, M. Schirm et al., “Changes in flagellin glycosylation affect Campylobacter autoagglutination and virulence,” Molecular Microbiology, vol. 60, no. 2, pp. 299–311, 2006.
[206]  F. Taguchi, S. Shibata, T. Suzuki et al., “Effects of glycosylation on swimming ability and flagellar polymorphic transformation in Pseudomonas syringae pv. tabaci 6605,” Journal of Bacteriology, vol. 190, no. 2, pp. 764–768, 2008.
[207]  I. Gryllos, J. G. Shaw, R. Gavín, S. Merino, and J. M. Tomás, “Role of flm locus in mesophilic Aeromonas species adherence,” Infection and Immunity, vol. 69, no. 1, pp. 65–74, 2001.
[208]  M. Schirm, I. C. Schoenhofen, S. M. Logan, K. C. Waldron, and P. Thibault, “Identification of unusual bacterial glycosylation by tandem mass spectrometry analyses of intact proteins,” Analytical Chemistry, vol. 77, no. 23, pp. 7774–7782, 2005.
[209]  A. A. Rabaan, I. Gryllos, J. M. Tomás, and J. G. Shaw, “Motility and the polar flagellum are required for Aeromonas caviae adherence to HEp-2 cells,” Infection and Immunity, vol. 69, no. 7, pp. 4257–4267, 2001.
[210]  S. M. B. Tabei, P. G. Hitchen, M. J. Day-Williams et al., “An Aeromonas caviae Genomic island ism required for both O-antigen lipopolysaccharide biosynthesis and flagellinlycosylation,” Journal of Bacteriology, vol. 191, no. 8, pp. 2851–2863, 2009.
[211]  R. Canals, S. Vilches, M. Wilhelms, J. G. Shaw, S. Merino, and J. M. Tomaás, “Non-structural flagella genes affecting both polar and lateral flagella-mediated motility in Aeromonas hydrophila,” Microbiology, vol. 153, no. 4, pp. 1165–1175, 2007.
[212]  M. Wilhelms, K. M. Fulton, S. M. Twine, J. M. Toma's, and S. Merino, “Differential glycosylation of polar and lateral flagellins in Aeromonas hydrophila AH-3,” The Journal of Biological Chemistry, vol. 287, no. 33, pp. 27851–27862, 2012.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413