全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Detection and Typing of Human Papilloma Virus by Multiplex PCR with Type-Specific Primers

DOI: 10.5402/2012/186915

Full-Text   Cite this paper   Add to My Lib

Abstract:

The primary underlying cause of cervical cancer is infection with one or more high-risk (HR) types of the human papilloma virus (HPV). Detection and typing of HPV have been commonly carried out by PCR-based assays, where HPV detection and typing are two separate procedures. Here, we present a multiplex PCR-based HPV typing assay that detects 20 HPV types (15 HR, 3 probably HR and 2 low risk) using type-specific primers and agarose gel electrophoresis. 46 cervical, urethral, and biopsy samples were analyzed by both Multiplex PCR and PGMY09/11 consensus PCR, and results were compared. 611 samples were further analyzed by Multiplex PCR, 282 were positive for HR HPV, and 101 showed multiple HR HPV infections. The relatively ease and economic accessibility of the method and its improved ability to detect high-risk HPV types in multiple HPV-infected samples make it an attractive option for HPV testing. 1. Introduction Cervical cancer is the second most common cancer in women worldwide [1] and is the most common cancer in women from low-income countries, where an estimated 80% of cases occur [2]. 16,000 cases of cervical cancer are newly detected every year in Mexico, resulting in a high incidence rate (50 cases per 100,000 women) [3, 4]. The primary underlying cause of cervical cancer is infection with one or more high-risk (HR) types of the human papilloma virus (HPV) [5–10]. 15 HR types (16, 18, 31, 33, 35, 39, 45, 51, 52, 56, 58, 59, 68, 73, and 82) have been proposed, including 3 types (26, 53, and 66) that should be considered probably carcinogenic [11, 12]. Detection and typing of HPV have been commonly carried out by PCR-based assays, where HPV DNA is amplified by consensus primers and then typed by restriction enzyme analysis (RFLP), hybridization with type-specific probes, or direct sequencing of the amplicons, among the most common methods [13]. Recently, methods that use multiplex PCR amplification with type-specific primers have been reported, where detection and typing are deducted from the amplification pattern of capillary electrophoresis [14]. Here, we present a multiplex PCR-based HPV typing assay that detect 20 HPV types (15?HR), 3 probably HR and 2 low risk (LR) using type-specific primers and agarose gel electrophoresis. 2. Materials and Methods 2.1. Sample Preparation 611 samples of cervical (232) and urethral (164) scrapes and paraffin-embedded tissue biopsies (215) submitted for HPV assessment were collected for Multiplex PCR HPV analysis. A subset of 46 cervical, 16 urethral, and 21 tissue biopsies were randomly selected for additional

References

[1]  D. M. Parkin and F. Bray, “Chapter 2: the burden of HPV-related cancers,” Vaccine, vol. 24, no. 3, pp. S11–S25, 2006.
[2]  World Health Organization, “International Agency for Research on Cancer. GLOBOCAN database 2002,” CANCERMondial, 2002, http://www-dep.iarc.fr/.
[3]  E. C. Lazcano-Ponce, P. Najera, P. Alonso de Ruiz, E. Buiatti, and M. Hernandez-Avila, “Programa de detección oportuna del cáncer cervical en México. I. Diagnóstico situacional,” Revista del Instituto Nacional de Cancerología, vol. 42, no. 3, pp. 123–140, 1996.
[4]  Secretaría de Salud (Méx), Registro Histopatológico de Neoplasias en México, Secretaría de Salud, México D. F., Mexico, 1999.
[5]  F. X. Bosch, A. Lorincz, N. Mu?oz, C. J. L. M. Meijer, and K. V. Shah, “The causal relation between human papillomavirus and cervical cancer,” Journal of Clinical Pathology, vol. 55, no. 4, pp. 244–265, 2002.
[6]  S. Chichareon, R. Herrero, N. Mu?oz et al., “Risk factors for cervical cancer in Thailand: a case-control study,” Journal of the National Cancer Institute, vol. 90, no. 1, pp. 50–57, 1998.
[7]  L. A. Koutsky, K. K. Holmes, C. W. Critchlow et al., “A cohort study of the risk of cervical intraepithelial neoplasia grade 2 or 3 in relation to papillomavirus infection,” The New England Journal of Medicine, vol. 327, no. 18, pp. 1272–1278, 1992.
[8]  M. Lehtinen, T. Luukkaala, K. L. Wallin et al., “Human papillomavirus infection, risk for subsequent development of cervical neoplasia and associated population attributable fraction,” Journal of Clinical Virology, vol. 22, no. 1, pp. 117–124, 2001.
[9]  M. H. Schiffman, H. M. Bauer, R. N. Hoover et al., “Epidemiologic evidence showing that human papillomavirus infection causes most cervical intraepithelial neoplasia,” Journal of the National Cancer Institute, vol. 85, no. 12, pp. 958–964, 1993.
[10]  T. C. Wright, J. Thomas Cox, L. Stewart Massad, L. B. Twiggs, and E. J. Wilkinson, “2001 consensus guidelines for the management of women with cervical cytological abnormalities,” Journal of the American Medical Association, vol. 287, no. 16, pp. 2120–2129, 2002.
[11]  N. Mu?oz, F. X. Bosch, S. De Sanjosé et al., “Epidemiologic classification of human papillomavirus types associated with cervical cancer,” The New England Journal of Medicine, vol. 348, no. 6, pp. 518–527, 2003.
[12]  E. M. De Villiers, C. Fauquet, T. R. Broker, H. U. Bernard, and H. Zur Hausen, “Classification of papillomaviruses,” Virology, vol. 324, no. 1, pp. 17–27, 2004.
[13]  A. Molijn, B. Kleter, W. Quint, and L. J. Van Doorn, “Molecular diagnosis of human papillomavirus (HPV) infections,” Journal of Clinical Virology, vol. 32, pp. S43–S51, 2005.
[14]  M. Nishiwaki, T. Yamamoto, S. Tone et al., “Genotyping of human papillomaviruses by a novel one-step typing method with multiplex PCR and clinical applications,” Journal of Clinical Microbiology, vol. 46, no. 4, pp. 1161–1168, 2008.
[15]  R. Kalendar, D. Lee, and A. H. Schulman, “FastPCR software for PCR primer and probe design and repeat search,” Genes, Genomes and Genomics, vol. 3, no. 1, pp. 1–14, 2009.
[16]  D. A. Bell, J. A. Taylor, D. F. Paulson, C. N. Robertson, J. L. Mohler, and G. W. Lucier, “Genetic risk and carcinogen exposure: a common inherited defect of the carcinogen-metabolism gene glutathione S-transferase M1 (GSTM1) that increases susceptibility to bladder cancer,” Journal of the National Cancer Institute, vol. 85, no. 14, pp. 1159–1164, 1993.
[17]  P. E. Gravitt, C. L. Peyton, T. Q. Alessi et al., “Improved amplification of genital human papillomaviruses,” Journal of Clinical Microbiology, vol. 38, no. 1, pp. 357–361, 2000.
[18]  P. E. Gravitt and R. Jamshidi, “Diagnosis and management of oncogenic cervical human papillomavirus infection,” Infectious Disease Clinics of North America, vol. 19, no. 2, pp. 439–458, 2005.
[19]  A. M. De Roda Husman, J. M. M. Walboomers, A. J. C. Van den Brule, C. J. L. M. Meijer, and P. J. F. Snijders, “The use of general primers GP5 and GP6 elongated at their 3' ends with adjacent highly conserved sequences improves human papillomavirus detection by PCR,” Journal of General Virology, vol. 76, no. 4, pp. 1057–1062, 1995.
[20]  M. V. Jacobs, P. J. F. Snijders, F. J. Voorhorst et al., “Reliable high risk HPV DNA testing by polymerase chain reaction: an intermethod and intramethod comparison,” Journal of Clinical Pathology, vol. 52, no. 7, pp. 498–503, 1999.
[21]  B. Kleter, L. J. Van Doorn, L. Schrauwen et al., “Development and clinical evaluation of a highly sensitive PCR-reverse hybridization line probe assay for detection and identification of anogenital human papillomavirus,” Journal of Clinical Microbiology, vol. 37, no. 8, pp. 2508–2517, 1999.
[22]  M. M. Manos, Y. Ting, D. K. Wright, A. J. Lewis, T. R. Broker, and S. M. Wolinski, “The use of polymerase chain reaction amplification for the detection of genital human papillomaviruses,” Cancer Cells, vol. 7, pp. 209–214, 1989.
[23]  H. Yoshikawa, T. Kawana, K. Kitagawa, M. Mizuno, H. Yoshikura, and A. Iwamoto, “Detection and typing of multiple general human papillomaviruses by DNA amplification with consensus primers,” Japanese Journal of Cancer Research, vol. 82, no. 5, pp. 524–531, 1991.
[24]  G. Astori, A. Arzese, C. Pipan, E. M. De Villiers, and G. A. Botta, “Characterization of a putative new HPV genomic sequence from a cervical lesion using L1 consensus primers and restriction fragment length polymorphism,” Virus Research, vol. 50, no. 1, pp. 57–63, 1997.
[25]  A. J. C. Van den Brule, R. Pol, N. Fransen-Daalmeijer, L. M. Schouls, C. J. L. M. Meijer, and P. J. F. Snijders, “GP5+/6+ PCR followed by reverse line blot analysis enables rapid and high-throughput identification of human papillomavirus genotypes,” Journal of Clinical Microbiology, vol. 40, no. 3, pp. 779–787, 2002.
[26]  O. Lungu, T. C. Wright, and S. Silverstein, “Typing of human papillomaviruses by polymerase chain reaction amplification with L1 consensus primers and RFLP analysis,” Molecular and Cellular Probes, vol. 6, no. 2, pp. 145–152, 1992.
[27]  P. Kay, K. Meehan, and A. L. Williamson, “The use of nested polymerase chain reaction and restriction fragment length polymorphism for the detection and typing of mucosal human papillomaviruses in samples containing low copy numbers of viral DNA,” Journal of Virological Methods, vol. 105, no. 1, pp. 159–170, 2002.
[28]  T. Iftner and L. L. Villa, “Chapter 12: human papillomavirus technologies,” Journal of the National Cancer Institute. Monographs, no. 31, pp. 80–88, 2003.
[29]  J. C. Feoli-Fonseca, L. L. Oligny, P. Brochu, P. Simard, S. Falconi, and W. V. Yotov, “Human papillomavirus (HPV) study of 691 pathological specimens from Quebec by PCR-direct sequencing approach,” Journal of Medical Virology, vol. 63, no. 4, pp. 284–292, 2001.
[30]  N. Speich, C. Schmitt, R. Bollmann, and M. Bollmann, “Human papillomavirus (HPV) study of 2916 cytological samples by PCR and DNA sequencing: genotype spectrum of patients from the west German area,” Journal of Medical Microbiology, vol. 53, no. 2, pp. 125–128, 2004.
[31]  M. Almonte, C. Ferreccio, J. L. Winkler et al., “Cervical screening by visual inspection, HPV testing, liquid-based and conventional cytology in Amazonian Peru,” International Journal of Cancer, vol. 121, no. 4, pp. 796–802, 2007.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413