全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Mode of Action and Specificity of Bacillus thuringiensis Toxins in the Control of Caterpillars and Stink Bugs in Soybean Culture

DOI: 10.1155/2014/135675

Full-Text   Cite this paper   Add to My Lib

Abstract:

The bacterium Bacillus thuringiensis (Bt) produces delta-endotoxins that possess toxic properties and can be used as biopesticides, as well as a source of genes for the construction of transgenic plants resistant to insects. In Brazil, the introduction of Bt soybean with insecticidal properties to the velvetbean caterpillar, the main insect pest of soybean, has been seen a promising tool in the management of these agroecosystems. However, the increase in stink bug populations in this culture, in various regions of the country, which are not susceptible to the existing genetically modified plants, requires application of chemicals that damage the environment. Little is known about the actual toxicity of Bt to Hemiptera, since these insects present sucking mouthparts, which hamper toxicity assays with artificial diets containing toxins of this bacterium. In recent studies of cytotoxicity with the gut of different hemipterans, susceptibility in the mechanism of action of delta-endotoxins has been demonstrated, which can generate promising subsidies for the control of these insect pests in soybean. This paper aims to review the studies related to the selection, application and mode of action of Bt in the biological control of the major pest of soybean, Anticarsia gemmatalis, and an analysis of advances in research on the use of Bt for control hemipterans. 1. Introduction Soybean, Glycine max (L.), is the largest agricultural commodity of economic importance in Brazil, occupying large areas of planting, targeting both domestic consumption and the export market. Given its economic importance, the problems caused by the attack of insect pests reduce production and decrease the quality of the grains or seeds [1]. Among the insect groups stands out the velvetbean caterpillar: Anticarsia gemmatalis (Hübner 1818), Lepidoptera: Noctuidae; the brown stink bug: Euschistus heros (Fabricius 1798), Hemiptera: Pentatomidae; the small green stink bug: Piezodorus guildinii (Westwood 1837), Hemiptera: Pentatomidae; and the green stink bug: Nezara viridula (Linneus 1758), Hemiptera: Pentatomidae. The use of microorganisms has assumed a prominent position among the options that seek to control insect pests without the use of chemicals and with high specific toxicity applied in agroecosystems. The Gram-positive bacterium Bacillus thuringiensis (Berliner 1909), Bt, stands out representing approximately 95% of microorganisms used in biological control of agricultural pests in different cultures [2]. Besides the economic aspect and the safety to human health [3], this bacterium

References

[1]  C. Rohde and M. Z. Schuster, “Associa??o entre inseticida biológico (Bacillus thuringiensis) com subdosagens de regulador de crescimento para o controle da Anticarsia gemmatalis (Lepidoptera: Noctuidae) na cultura da soja,” Revista Brasileira de Tecnologia Aplicada nas Ciências Agrárias, vol. 5, pp. 131–146, 2012.
[2]  B. Lambert, H. H?fte, K. Annys, S. Jansens, P. Soetaert, and M. Peferoen, “Novel Bacillus thuringiensis insecticidal crystal protein with a silent activity against coleopteran larvae,” Applied and Environmental Microbiology, vol. 58, no. 8, pp. 2536–2542, 1992.
[3]  J. P. Siegel, “The mammalian safety of Bacillus thuringiensis-based insecticides,” Journal of Invertebrate Pathology, vol. 77, no. 1, pp. 13–21, 2001.
[4]  K. van Frankenhuyzen, “Insecticidal activity of Bacillus thuringiensis crystal proteins,” Journal of Invertebrate Pathology, vol. 101, no. 1, pp. 1–16, 2009.
[5]  B. M. Hansen and S. Salamitou, “Virulence of Bacillus thuringiensis,” in Entomopathogenic Bacteria: From Laboratory to Field Application, J. F. Charles, A. Delecluse, and C. Nielsen-Le Roux, Eds., pp. 41–44, Kluwer Academic, Dodrecht, The Netherlands, 2000.
[6]  S. Gupta and A. K. Dikshit, “Biopesticides: an ecofriendly approach for pest control,” Journal of Biopesticides, vol. 3, no. 1, pp. 186–188, 2010.
[7]  L. M. Fiuza, “Receptores de Bacillus turingiensis em insetos,” Biotecnologia Ciência e Desenvolvimento, vol. 32, pp. 84–89, 2004.
[8]  A. M. Shelton, J. Zhao, and R. T. Roush, “Economic, ecological, food safety, and social consequences of the deployment of Bt transgenic plants,” Annual Review of Entomology, vol. 47, pp. 845–881, 2002.
[9]  M. Qaim, “The economics of genetically modified crops,” Annual Review Resoursch Economic, vol. 1, pp. 665–693, 2009.
[10]  G. L. M. Martins, L. C. Toscano, G. V. Tomquelski, and W. I. Maruyama, “Inseticidas no controle de Anticarsia gemmatalis (Lepidoptera: Noctuidae) e impacto sobre aranhas predadoras em soja,” Revista Brasileira de Ciências Agrárias, vol. 4, pp. 128–132, 2009.
[11]  A. L. Louren??o, P. C. Reco, N. R. Braga, G. E. Valle, and J. B. Pinheiro, “Produtividade de genótipos de soja sob infesta??o da lagarta-da-soja e de percevejos,” Neotropical Entomology, vol. 39, pp. 275–281, 2010.
[12]  D. Gallo, O. Nakano, S. S. Neto et al., Entomologia Agrícola, FEALQ, Piracicaba, Brazil, 2002.
[13]  F. P. F. Reay-Jones, “Spatial and temporal patterns of stink bugs (Hemiptera: Pentatomidae) in wheat,” Environmental Entomology, vol. 39, no. 3, pp. 944–955, 2010.
[14]  N. P. Chougule and B. C. Bonning, “Toxins for transgenic resistance to hemipteran pests,” Toxins, vol. 4, no. 6, pp. 405–429, 2012.
[15]  L. M. Fiuza, “Bacillus thuringiensis: características e potencial no manejo de insetos,” Acta Biologica Leopoldensia, vol. 23, pp. 141–156, 2001.
[16]  C. S. Hernández, R. Andrew, Y. Bel, and J. Ferré, “Isolation and toxicity of Bacillus thuringiensis from potato-growing areas in Bolivia,” Journal of Invertebrate Pathology, vol. 88, no. 1, pp. 8–16, 2005.
[17]  M. F. Bizzarri and A. H. Bishop, “The ecology of Bacillus thuringiensis on the phylloplane: colonization from soil, plasmid transfer, and interaction with larvae of Pieris brassicae,” Microbial Ecology, vol. 56, no. 1, pp. 133–139, 2008.
[18]  F. Al-Momani and M. Obeidat, “Ecology, toxicity, and hydrolytic activities of Bacillus thuringiensis in forests,” Turkish Journal of Agriculture and Forestry, vol. 36, pp. 1104–1133, 2012.
[19]  H. H?fte and H. R. Whiteley, “Insecticidal crystal proteins of Bacillus thuringiensis,” Microbiological Reviews, vol. 53, no. 2, pp. 242–255, 1989.
[20]  E. Schnepf, N. Crickmore, J. van Rie et al., “Bacillus thuringiensis and its pesticidal crystal proteins,” Microbiology and Molecular Biology Reviews, vol. 62, no. 3, pp. 775–806, 1998.
[21]  N. Crickmore, D. R. Zeigler, J. Feitelson et al., “Revision of the nomenclature for the Bacillus thuringiensis pesticidal crystal proteins,” Microbiology and Molecular Biology Reviews, vol. 62, no. 3, pp. 807–813, 1998.
[22]  M. E. M. Habib and C. F. S. Andrade, “Bactérias entomopatogênicas,” in Controle microbiano de insetos, S. B. Alves, Ed., pp. 383–446, FEALQ, Piracicaba, Brazil, 1998.
[23]  A. Bravo, S. S. Gill, and M. Soberón, “Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control,” Toxicon, vol. 49, no. 4, pp. 423–435, 2007.
[24]  R. G. Monnerat and A. Bravo, “Proteínas bioinseticidas produzidas pela bactéria Bacillus thuringiensis: Modo de a??o e resistência,” in Controle Biológico, I. S. Melo and J. L. Azevedo, Eds., pp. 163–200, Embrapa-CNPMA, Jaguariúna, Brazil, 2000.
[25]  N. Crickmore, “Using worms to better understand how Bacillus thuringiensis kills insects,” Trends in Microbiology, vol. 13, no. 8, pp. 347–350, 2005.
[26]  N. Crickmore, Bacillus thuringiensis Nomenclature, 2012, http://www.lifesci.sussex.ac.uk/home/Neil_Crickmore/Bt/.
[27]  M. Porcar and V. Juárez-Pérez, “PCR-based identification of Bacillus thuringiensis pesticidal crystal genes,” FEMS Microbiology Reviews, vol. 26, no. 5, pp. 419–432, 2003.
[28]  B. Tian, J. Yang, and K. Zhang, “Bacteria used in the biological control of plant-parasitic nematodes: populations, mechanisms of action, and future prospects,” FEMS Microbiology Ecology, vol. 61, no. 2, pp. 197–213, 2007.
[29]  G. S. Jouzani, A. Seifinejad, A. Saeedizadeh et al., “Molecular detection of nematicidal crystalliferous Bacillus thuringiensis strains of Iran and evaluation of their toxicity on free-living and plant-parasitic nematodes,” Canadian Journal of Microbiology, vol. 54, no. 10, pp. 812–822, 2008.
[30]  G. A. Kleter, R. Bhula, K. Bodnaruk et al., “Altered pesticide use on transgenic crops and the associated general impact from an environmental perspective,” Pest Management Science, vol. 63, no. 11, pp. 1107–1115, 2007.
[31]  C. James, “Global status of commercialized Biotech/GM 25 crops: 2011,” ISAAA Brief 43-2011: Status Global das Variedades Transgênicas/Biotecnológicas Comerciais, 2011, http://www.isaaa.org/resources/publications/briefs/43/.
[32]  F. B. Silva, J. A. N. Batista, B. M. Marra et al., “Pro domain peptide of HGCP-Iv cysteine proteinase inhibits nematode cysteine proteinases,” Genetics and Molecular Research, vol. 3, no. 3, pp. 342–355, 2004.
[33]  S. Mohammedi, S. B. Subramanian, S. Yan, R. D. Tyagi, and J. R. Valéro, “Molecular screening of Bacillus thuringiensis strains from wastewater sludge for biopesticide production,” Process Biochemistry, vol. 41, no. 4, pp. 829–835, 2006.
[34]  G. Armengol, M. C. Escobar, M. E. Maldonado, and S. Orduz, “Diversity of Colombian strains of Bacillus thuringiensis with insecticidal activity against dipteran and lepidopteran insects,” Journal of Applied Microbiology, vol. 102, no. 1, pp. 77–88, 2007.
[35]  S. L. Brandt, T. A. Coudron, J. Habibi et al., “Interaction of two Bacillus thuringiensisδ-endotoxins with the digestive system of Lygus hesperus,” Current Microbiology, vol. 48, no. 1, pp. 1–9, 2004.
[36]  L. B. Pra?a, A. C. Batista, E. S. Martins et al., “Estirpes de Bacillus Thuringiensis efetivas contra insetos das Ordens Lepidoptera, Coleoptera e Diptera,” Pesquisa Agropecuaria Brasileira, vol. 39, pp. 11–16, 2004.
[37]  A. Franco-Rivera, G. Benintende, J. Cozzi, V. M. Baizabal-Aguirre, J. J. Valdez-Alarcón, and J. E. López-Meza, “Molecular characterization of Bacillus thuringiensis strains from Argentina,” Antonie van Leeuwenhoek, vol. 86, no. 1, pp. 87–92, 2004.
[38]  C. M. Berón and G. L. Salerno, “Characterization of Bacillus thuringiensis isolates from Argentina that are potentially useful in insect pest control,” BioControl, vol. 51, no. 6, pp. 779–794, 2006.
[39]  R. G. Monnerat, A. C. Batista, P. T. de Medeiros et al., “Screening of Brazilian Bacillus thuringiensis isolates active against Spodoptera frugiperda, Plutella xylostella and Anticarsia gemmatalis,” Biological Control, vol. 41, no. 3, pp. 291–295, 2007.
[40]  J. O. Silva-Werneck and D. J. Ellar, “Characterization of a novel Cry9Bb δ-endotoxin from Bacillus thuringiensis,” Journal of Invertebrate Pathology, vol. 98, no. 3, pp. 320–328, 2008.
[41]  V. Gobatto, S. G. Giani, M. Camassola, A. J. P. Dillon, A. Specht, and N. M. Barros, “Bacillus thuringiensis isolates entomopathogenic for Culex quinquefasciatus (Diptera: Culicidae) and Anticarsia gemmatalis (Lepidoptera: Noctuidae),” Brazilian Journal of Biology, vol. 70, no. 4, pp. 1039–1046, 2010.
[42]  L. M. Fiuza, R. Schünemann, L. M. N. Pinto, and M. H. B. Zanettini, “Two new Brazilian isolates of Bacillus thuringiensis toxic to Anticarsia gemmatalis (Lepidoptera: Noctuidae ),” Brazilian Journal of Biology, vol. 72, pp. 363–369, 2012.
[43]  F. S. Walters and L. H. English, “Toxicity of Bacillus thuringiensisδ-endotoxins toward the potato aphid in an artificial diet bioassay,” Entomologia Experimentalis et Applicata, vol. 77, no. 2, pp. 211–216, 1995.
[44]  M. Porcar, F. Gómez, A. Gruppe, A. Gómez-Pajuelo, I. Segura, and R. Schr?der, “Hymenopteran specificity of Bacillus thuringiensis strain PS86Q3,” Biological Control, vol. 45, no. 3, pp. 427–432, 2008.
[45]  M. Porcar, A. Grenier, B. Federici, and Y. Rahbé, “Effects of Bacillus thuringiensisδ-endotoxins on the pea aphid (Acyrthosiphon pisum),” Applied and Environmental Microbiology, vol. 75, no. 14, pp. 4897–4900, 2009.
[46]  H. Li, N. P. Chougule, and B. C. Bonning, “Interaction of the Bacillus thuringiensisδ endotoxins Cry1Ac and Cry3Aa with the gut of the pea aphid, Acyrthosiphon pisum (Harris),” Journal of Invertebrate Pathology, vol. 107, no. 1, pp. 69–78, 2011.
[47]  F. M. da Cunha, F. H. Caetano, V. Wanderley-Teixeira, J. B. Torres, A. A. C. Teixeira, and L. C. Alves, “Ultra-structure and histochemistry of digestive cells of Podisus nigrispinus (Hemiptera: Pentatomidae) fed with prey reared on bt-cotton,” Micron, vol. 43, no. 2-3, pp. 245–250, 2012.
[48]  W. A. Parrott, J. N. All, M. J. Adang, M. A. Bailey, H. R. Boerma, and C. N. Stewart Jr., “Recovery and evaluation of soybean plants transgenic for a Bacillus thuringiensis var. Kurstaki insecticidal gene,” In Vitro Cellular & Developmental Biology, vol. 30, no. 3, pp. 144–149, 1994.
[49]  D. A. Fischhoff and F. J. Perlak, “Synthetic plant genes,” U.S. Patent # 5: 500, 365, 1995.
[50]  C. N. Stewart Jr., M. J. Adang, J. N. All et al., “Genetic transformation, recovery, and characterization of fertile soybean transgenic for a synthetic Bacillus thuringiensis cryIAc gene,” Plant Physiology, vol. 112, no. 1, pp. 121–129, 1996.
[51]  D. R. Walker, J. N. All, R. M. McPherson, H. R. Boerma, and W. A. Parrott, “Field evaluation of soybean engineered with a synthetic cry1Ac transgene for resistance to corn earworm, soybean looper, velvetbean caterpillar (Lepidoptera: Noetuidae), and lesser cornstalk borer (Lepidoptera: Pyralidae),” Journal of Economic Entomology, vol. 93, no. 3, pp. 613–622, 2000.
[52]  T. C. Macrae, M. E. Baur, D. J. Boethel et al., “Laboratory and field evaluations of transgenic soybean exhibiting high-dose expression of a synthetic Bacillus thuringiensis cry1A gene for control of lepidoptera,” Journal of Economic Entomology, vol. 98, no. 2, pp. 577–587, 2005.
[53]  J. A. Miklos, M. F. Alibhai, S. A. Bledig et al., “Characterization of soybean exhibiting high expression of a synthetic Bacillus thuringiensis cry1A transgene that confers a high degree of resistance to lepidopteran pests,” Crop Science, vol. 47, no. 1, pp. 148–157, 2007.
[54]  M. S. Homrich, L. M. P. Passaglia, J. F. Pereira et al., “Resistance to Anticarsia gemmatalis Hübner (Lepidoptera, Noctuidae) in transgenic soybean (Glycine max (L.) Merrill Fabales, Fabaceae) cultivar IAS5 expressing a modified Cry1Ac endotoxin,” Genetics and Molecular Biology, vol. 31, no. 2, pp. 522–531, 2008.
[55]  R. M. McPherson and T. C. MacRae, “Assessing lepidopteran abundance and crop injury in soybean lines exhibiting a synthetic Bacillus thuringiensis cry1A gene,” Journal of Entomological Science, vol. 44, no. 2, pp. 120–131, 2009.
[56]  A. I. Aronson and Y. Shai, “Why Bacillus thuringiensis insecticidal toxins are so effective: unique features of their mode of action,” FEMS Microbiology Letters, vol. 195, no. 1, pp. 1–8, 2001.
[57]  K. Yasutake, A. Uemori, K. Kagoshima, and M. Ohba, “Serological identification and insect toxicity of Bacillus thuringiensis isolated from the island Okinoerabu-jima, Japan,” Applied Entomology and Zoology, vol. 42, no. 2, pp. 285–290, 2007.
[58]  M. Ohba, N. Wasano, and E. Mizuki, “Bacillus thuringiensis soil populations naturally occurring in the Ryukyus, a subtropic region of Japan,” Microbiological Research, vol. 155, no. 1, pp. 17–22, 2000.
[59]  B. E. Tabashnik, A. J. Gassmann, D. W. Crowder, and Y. Carrière, “Insect resistance to Bt crops: evidence versus theory,” Nature Biotechnology, vol. 26, no. 2, pp. 199–202, 2008.
[60]  A. Bravo, S. Likitvivatanavong, S. S. Gill, and M. Soberón, “Bacillus thuringiensis: a story of a successful bioinsecticide,” Insect Biochemistry and Molecular Biology, vol. 41, no. 7, pp. 423–431, 2011.
[61]  J. B. Torres and J. R. Ruberson, “Interactions of Bacillus thuringiensis Cry1Ac toxin in genetically engineered cotton with predatory heteropterans,” Transgenic Research, vol. 17, no. 3, pp. 345–354, 2008.
[62]  A. Raps, J. Kehr, P. Gugerli, W. J. Moar, F. Bigler, and A. Hilbeck, “Immunological analysis of phloem sap of Bacillus thuringiensis corn and of the nontarget herbivore Rhopalosiphum padi (Homoptera: Aphididae) for the presence of Cry1Ab,” Molecular Ecology, vol. 10, no. 2, pp. 525–533, 2001.
[63]  J. B. Torres, J. R. Ruberson, and M. J. Adang, “Expression of Bacillus thuringiensis Cry1Ac protein in cotton plants, acquisition by pests and predators: a tritrophic analysis,” Agricultural and Forest Entomology, vol. 8, no. 3, pp. 191–202, 2006.
[64]  H. A. Bell, R. E. Down, E. C. Fitches, J. P. Edwards, and A. M. R. Gatehouse, “Impact of genetically modified potato expressing plant-derived insect resistance genes on the predatory bug Podisus maculiventris (Heteroptera: Pentatomidae),” Biocontrol Science and Technology, vol. 13, no. 8, pp. 729–741, 2003.
[65]  J. Romeis, D. Bartsch, F. Bigler et al., “Assessment of risk of insect-resistant transgenic crops to nontarget arthropods,” Nature Biotechnology, vol. 26, no. 2, pp. 203–208, 2008.
[66]  G. L. L?vei, D. A. Andow, and S. Arpaia, “Transgenic insecticidal crops and natural enemies: a detailed review of laboratory studies,” Environmental Entomology, vol. 38, no. 2, pp. 293–306, 2009.
[67]  M. García, F. Ortego, P. Casta?era, and G. P. Farinós, “Effects of exposure to the toxin Cry1Ab through Bt maize fed-prey on the performance and digestive physiology of the predatory rove beetle Atheta coriaria,” Biological Control, vol. 55, no. 3, pp. 225–233, 2010.
[68]  J. C. Zanuncio, R. N. C. Guedes, H. N. Oliveira, and T. V. Zanuncio, “Uma década de estudos com percevejos predadores: conquistas e desafios,” in Controle biológico no Brasil: Parasitóides e predadores, J. R. P. Parra, P. S. M. Botelho, B. S. Correa-Ferreira, and J. M. S. Bento, Eds., pp. 495–505, Manole, S?o Paulo, Brazil, 2002.
[69]  P. T. Cristofoletti, A. F. Ribeiro, C. Deraison, Y. Rahbé, and W. R. Terra, “Midgut adaptation and digestive enzyme distribution in a phloem feeding insect, the pea aphid Acyrthosiphon pisum,” Journal of Insect Physiology, vol. 49, no. 1, pp. 11–24, 2003.
[70]  M. K. Wright, S. L. Brandt, T. A. Coudron et al., “Characterization of digestive proteolytic activity in Lygus hesperus Knight (Hemiptera: Miridae),” Journal of Insect Physiology, vol. 52, no. 7, pp. 717–728, 2006.
[71]  S. M. Levy, A. M. F. Falleiros, E. A. Gregório, N. R. Arrebola, and L. A. Toledo, “The larval midgut of Anticarsia gemmatalis (Hübner) (lepidoptera: Noctuidae): light and electron microscopy studies of the epithelial cells,” Brazilian Journal of Biology, vol. 64, no. 3B, pp. 633–638, 2004.
[72]  A. Bravo, K. Hendrickx, S. Jansens, and M. Peferoen, “Immunocytochemical analysis of specific binding of Bacillus thuringiensis insecticidal crystal proteins to lepidopteran and coleopteran mudgut membranes,” Journal of Invertebrate Pathology, vol. 60, no. 3, pp. 247–253, 1992.
[73]  V. M. Griego, L. J. Fancher, and K. D. Spence, “Scanning electron microscopy of the disruption of tobacco hornworm, Manduca sexta, midgut by Bacillus thuringiensis endotoxin,” Journal of Invertebrate Pathology, vol. 35, no. 2, pp. 186–189, 1980.
[74]  S. Mathavan, P. M. Sudha, and S. M. Pechimuthu, “Effect of Bacillus thuringiensis israelensis on the midgut cells of Bombyx mori larvae: a histopathological and histochemical study,” Journal of Invertebrate Pathology, vol. 53, no. 2, pp. 217–227, 1989.
[75]  N. Knaak and L. M. Fiuza, “Histopathology of Anticarsia gemmatalis Hübner (Lepidoptera; Noctuidae) treated with nucleopolyhedrovirus and Bacillus thuringiensis serovar kurstaki,” Brazilian Journal of Microbiology, vol. 36, no. 2, pp. 196–200, 2005.
[76]  N. Knaak, A. R. Franz, G. F. Santos, and L. M. Fiuza, “Histopathology and the lethal effect of cry proteins and strains of Bacillus thuringiensis berliner in Spodoptera frugiperda J.E. Smith Caterpillars (Lepidoptera, Noctuidae),” Brazilian Journal of Biology, vol. 70, no. 3, pp. 677–684, 2010.
[77]  N. Knaak, D. L. Berlitz, and L. M. Fiuza, “Toxicology of the bioinsecticides used in agricultural food production,” in Histopathology: Reviews and Recent Advances, E. P. Martinez, Ed., pp. 177–194, InTech Open Access, Rijeka, Croatia, 2012.
[78]  B. H. Knowles, “Mechanism of action of Bacillus thuringiensis insecticidal δ-endotoxins,” Advances in Insect Physiology, vol. 24, pp. 275–308, 1994.
[79]  B. H. Knowles and J. A. T. Dow, “The crystal δ-endotoxins of Bacillus thuringiensis: models for their mechanism of action on the insect gut,” BioEssays, vol. 15, no. 7, pp. 469–476, 1993.
[80]  A. Bravo, S. S. Gill, and M. Soberón, “Bacillus thuringiensis mechanisms and use,” in Comprehensive Molecular Insect Science, L. I. Gilbert, I. Kostas, and S. S. Gill, Eds., pp. 175–206, Elsevier, Oxford, UK, 2005.
[81]  J. Li, J. Carroll, and D. J. Ellar, “Crystal structure of insecticidal δ-endotoxin from Bacillus thuringiensis at 2.5?? resolution,” Nature, vol. 353, no. 6347, pp. 815–821, 1991.
[82]  R. A. de Maagd, A. Bravo, and N. Crickmore, “How Bacillus thuringiensis has evolved specific toxins to colonize the insect world,” Trends in Genetics, vol. 17, no. 4, pp. 193–199, 2001.
[83]  L. J. Gahan, F. Gould, and D. G. Heckel, “Identification of a gene associated with Bt resistance in Heliothis virescens,” Science, vol. 293, no. 5531, pp. 857–860, 2001.
[84]  J. L. Jurat-Fuentes and M. J. Adang, “Characterization of a Cry1Ac-receptor alkaline phosphatase in susceptible and resistant Heliothis virescens larvae,” European Journal of Biochemistry, vol. 271, no. 15, pp. 3127–3135, 2004.
[85]  C. Hofmann, H. Vanderbruggen, H. Hofte, J. van Rie, S. Jansens, and H. van Mellaert, “Specificity of Bacillus thuringiensisδ-endotoxins is correlated with the presence of high-affinity binding sites in the brush border membrane of target insect midguts,” Proceedings of the National Academy of Sciences of the United States of America, vol. 85, no. 21, pp. 7844–7848, 1988.
[86]  J. van Rie, S. Jansens, H. H?fte, D. Degheele, and H. van Mellaert, “Specificity of Bacillus thuringiensisδ-endotoxins. Importance of specific receptors on the brush border membrane of the mid-gut of target insects,” European Journal of Biochemistry, vol. 186, no. 1-2, pp. 239–247, 1989.
[87]  I. Gómez, L. Pardo-López, C. Mu?oz-Garay et al., “Role of receptor interaction in the mode of action of insecticidal Cry and Cyt toxins produced by Bacillus thuringiensis,” Peptides, vol. 28, no. 1, pp. 169–173, 2007.
[88]  X. Zhang, M. Candas, N. B. Griko, R. Taussig, and L. A. Bulla Jr., “A mechanism of cell death involving an adenylyl cyclase/PKA signaling pathway is induced by the Cry1Ab toxin of Bacillus thuringiensis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 26, pp. 9897–9902, 2006.
[89]  J. Oestergaard, R. Ehlers, A. C. Martínez-Ramírez, and M. D. Real, “Binding of Cyt1Aa and Cry11Aa toxins of Bacillus thuringiensis serovar israelensis to brush border membrane vesicles of Tipula paludosa (Diptera: Nematocera) and subsequent pore formation,” Applied and Environmental Microbiology, vol. 73, no. 11, pp. 3623–3629, 2007.
[90]  M. E. C. Sousa, F. A. B. Santos, V. Wanderley-Teixeira et al., “Histopathology and ultrastructure of midgut of Alabama argillacea (Hübner) (Lepidoptera: Noctuidae) fed Bt-cotton,” Journal of Insect Physiology, vol. 56, no. 12, pp. 1913–1919, 2010.
[91]  Y. C. Zhu, F. R. Zeng, and B. Oppert, “Molecular cloning of trypsin-like cDNAs and comparison of proteinase activities in the salivary glands and gut of the tarnished plant bug Lygus lineolaris (Heteroptera: Miridae),” Insect Biochemistry and Molecular Biology, vol. 33, no. 9, pp. 889–899, 2003.
[92]  B. A. M. Guedes, J. C. Zanuncio, F. S. Ramalho, and J. E. Serr?o, “Midgut morphology and enzymes of the obligate zoophytophagous stinkbug Brontocoris tabidus (Signoret, 1863) (Heteroptera: Pentatomidae),” Pan-Pacific Entomologist, vol. 83, no. 1, pp. 66–74, 2007.
[93]  D. Hegedus, M. Erlandson, C. Gillott, and U. Toprak, “New insights into peritrophic matrix synthesis, architecture, and function,” Annual Review of Entomology, vol. 54, pp. 285–302, 2009.
[94]  P. E. Degrande and L. M. Vivan, “Pragas da soja,” in Boletim de Pesquisa de Soja, J. Caju, M. M. Yuyama, S. Suzuki, and S. A. Camacho, Eds., vol. 12, p. 254, Funda??o MT, Rondonópolis, Brazil, 2008.
[95]  A. Chattopadhyay, N. B. Bhatnagar, and R. Bhatnagar, “Bacterial insecticidal toxins,” Critical Reviews in Microbiology, vol. 30, no. 1, pp. 33–54, 2004.
[96]  E. W. Nester, L. S. Thomashow, M. Metz, and M. Girdon, 100 Years of Bacillus thuringiensis: A Critical Scientific Assesment, ASM, Washington, DC, USA, 2002.
[97]  P. Tamez-Guerra, L. J. Galán-Wong, H. Medrado-Roldán et al., “Bioinsecticidas: su empleo, producción y comercialización em México,” Ciência UANL, San Nicolás de Los Garzas, vol. 4, no. 2, pp. 143–152, 2001.
[98]  M. Chen, J. Zhao, H. L. Collins, E. D. Earle, J. C?o, and A. M. Shelton, “A critical assessment of the effects of Bt transgenic plants on parasitoids,” PLoS ONE, vol. 3, no. 5, Article ID e2284, 2008.
[99]  J.D. Vendramim and E.C. Guzzo, “Resistência de plantas e a bioecologia e nutri??o dos insetos,” in Bioecologia e nutri??o de insetos: base para o manejo integrado de pragas, A. R. Panizzi and J. R. P. Parra, Eds., pp. 1055–1105, Embrapa Informa??o Tecnológica, Brasília, Brazil, 2009.
[100]  J. O. Siqueira, I. C. B. Trannin, M. A. P. Ramalho, and E. M. G. Fontes, “Interferências no agrossistema e riscos ambientais de culturas transgênicas tolerantes a herbicidas e protegidas contra insetos,” Cadernos de Ciência & Tecnologia, vol. 21, pp. 11–81, 2004.
[101]  M. Marvier, C. McCreedy, J. Regetz, and P. Kareiva, “A meta-analysis of effects of Bt cotton and maize on nontarget invertebrates,” Science, vol. 316, no. 5830, pp. 1475–1477, 2007.
[102]  C. James, Global Status of Commercialized Biotech/GM Crops: 2009, ISAAA Brief No. 41, ISAAA, Ithaca, NY, USA, 2009.
[103]  A. L. Boi?a Jr., A. G. da Silva, D. B. Bottega et al., “Resistência de plantas e o uso de produtos naturais como táticas de controle no manejo integrado de pragas,” in Tópicos em Entomologia Agrícola—IV, A. C. Busoli, D. F. Fraga, L. da Concei??o-Santos et al., Eds., pp. 139–158, Gráfica Multipress Ltda, Jaboticabal, Brazil, 2011.
[104]  P. Christou, D. E. McCabe, and W. F. Swain, “Stable transformation of soybean callus by DNA-coated gold particles,” Plant Physiology, vol. 87, no. 3, pp. 671–674, 1988.
[105]  M. A. W. Hinchee, D. V. Connor-Ward, C. A. Newell et al., “Production of transgenic soybean plants using Agrobacterium-mediated DNA transfer,” Biotechnology, vol. 6, no. 8, pp. 915–922, 1988.
[106]  N. Crickmore, “Beyond the spore—past and future developments of Bacillus thuringiensis as a biopesticide,” Journal of Applied Microbiology, vol. 101, no. 3, pp. 616–619, 2006.
[107]  D. G. Heckel, L. J. Gahan, S. W. Baxter et al., “The diversity of Bt resistance genes in species of Lepidoptera,” Journal of Invertebrate Pathology, vol. 95, no. 3, pp. 192–197, 2007.
[108]  J. L. Fox, “Resistance to Bt toxin surprisingly absent from pests,” Nature biotechnology, vol. 21, no. 9, pp. 958–959, 2003.
[109]  D. R. G. Price and J. A. Gatehouse, “RNAi-mediated crop protection against insects,” Trends in Biotechnology, vol. 26, no. 7, pp. 393–400, 2008.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413