全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Influence of the Percentage of Doped into Matrix on Photocatalysis

DOI: 10.5402/2012/304546

Full-Text   Cite this paper   Add to My Lib

Abstract:

The sol-gel process was employed in the preparation of titania-doped spherical nanosilica for application in photocatalysis. To this end, the silica matrix was doped with 1 and 10% titania, and the catalytic activity of the resulting solids in the degradation of rhodamine was tested. The synthesized materials were thermally treated at 120, 400, and 800°C. Differential thermal analysis did not evidence the titania-phase transition from anatase to rutile. Scanning electron microscopy revealed the formation of monodisperse spherical nanoparticles with sizes varying between 400 and 500?nm. The UV-Vis absorption spectra showed that the silica doped with 10% titania promoted 86% rhodamine degradation within 90?minutes, as compared to 40% in the case of the silica containing 1% titania. The silica matrix was demonstrated to affect the titania-phase transformation. 1. Introduction Advances in nanotechnology have enabled production of nanosized silica via the sol-gel process, and this material has been widely employed in scientific research as well as in engineering development. Nowadays, the sol-gel technique is the method that is most commonly employed for the synthesis of silica nanoparticles. This route involves simultaneous hydrolysis and condensation of alkoxides, so that silica nanoparticles with several characteristics can be achieved [1]. The advantages of monodispersed nanometric particles have been demonstrated, and their importance for many industrial applications, for example, as catalysts, pigments, or pharmaceuticals, has been shown [2]. The sol-gel methodology is well known for being an easy and quick preparation method, and two routes can be used, namely, the hydrolytic and nonhydrolytic [3]. The hydrolytic sol-gel process is based on the inorganic polymerization of molecular precursors and involves evolution of a polymer through the sol and consequent formation of a network. The molecular precursor employed in the sol-gel process is essentially an alkoxide, and several combinations can be achieved, depending on the compound that is utilized in the reaction [4, 5]. The nonhydrolytic sol-gel process is based on the condensation reaction between a metallic or semimetallic halide and a metallic or semimetallic alkoxide, thereby generating an oxide [6, 7]. Titanium dioxide exists in two main forms, more specifically anatase and rutile. Countless applications have been described for these different phases, but titanium dioxide is mainly used in catalysis (photocatalysis) [8]. Various literature works have discussed about the photocatalytic efficiency

References

[1]  W. St?ber, A. Fink, and E. Bohm, “Controlled growth of monodisperse silica spheres in the micron size range,” Journal of Colloid and Interface Science, vol. 26, no. 1, pp. 62–69, 1968.
[2]  A. S. de Dios and M. E. Díaz-García, “Multifunctional nanoparticles: analytical prospects,” Analytica Chimica Acta, vol. 666, no. 1-2, pp. 1–22, 2010.
[3]  J. D. Wright and N. A. J. Sommerdijk, Sol-Gel Materials Chemistry and Applications, Taylor & Francis, 2003.
[4]  L. L. Hench and J. K. West, “The sol-gel process,” Chemical Reviews, vol. 90, no. 1, pp. 33–72, 1990.
[5]  C. J. Brinker and G. W. Scherer, Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing, Academic Press, San Diego, Calif, USA, 1990.
[6]  S. Acosta, R. J. P. Corriu, D. Leclercq, P. Lefèvre, P. H. Mutin, and A. Vioux, “Preparation of alumina gels by a non-hydrolytic sol-gel processing method,” Journal of Non-Crystalline Solids, vol. 170, no. 3, pp. 234–242, 1994.
[7]  O. J. de Lima, H. C. Sacco, D. C. Oliveira et al., “Porphyrins entrapped in an alumina matrix,” Journal of Materials Chemistry, vol. 11, no. 10, pp. 2476–2481, 2001.
[8]  D. A. H. Hanaor and C. C. Sorrell, “Review of the anatase to rutile phase transformation,” Journal of Materials Science, vol. 46, no. 4, pp. 855–874, 2011.
[9]  L. Ge, M. Xu, M. Sun, and H. Fang, “Fabrication and characterization of nano TiO2 thin films at low temperature,” Materials Research Bulletin, vol. 41, no. 9, pp. 1596–1603, 2006.
[10]  H. Shin, H. S. Jung, K. S. Hong, and J.-K. Lee, “Crystal phase evolution of TiO2 nanoparticles with reaction time in acidic solutions studied via freeze-drying method,” Journal of Solid State Chemistry, vol. 178, no. 1, pp. 15–21, 2005.
[11]  S. Jin and F. Shiraishi, “Photocatalytic activities enhanced for decompositions of organic compounds over metal-photodepositing titanium dioxide,” Chemical Engineering Journal, vol. 97, no. 2–3, pp. 203–211, 2004.
[12]  K. Melghit and S. S. Al-Rabaniah, “Photodegradation of Congo red under sunlight catalysed by nanorod rutile TiO2,” Journal of Photochemistry and Photobiology A, vol. 184, no. 3, pp. 331–334, 2006.
[13]  Y. Jin, A. Li, S. G. Hazelton et al., “Amorphous silica nanohybrids: synthesis, properties and applications,” Coordination Chemistry Reviews, vol. 253, no. 23-24, pp. 2998–3014, 2009.
[14]  J.-M. Herrmann, “Photocatalysis fundamentals revisited to avoid several misconceptions,” Applied Catalysis B, vol. 99, no. 3-4, pp. 461–468, 2010.
[15]  L. Mar?al, E. H. de Faria, M. Saltarelli et al., “Amine-functionalized titanosilicates prepared by the sol-gel process as adsorbents of the Azo-Dye orange II,” Industrial and Engineering Chemistry Research, vol. 50, no. 1, pp. 239–246, 2011.
[16]  Y. Chen, K. Wang, and L. Lou, “Photodegradation of dye pollutants on silica gel supported TiO2 particles under visible light irradiation,” Journal of Photochemistry and Photobiology A, vol. 163, no. 1–2, pp. 281–287, 2004.
[17]  K. Y. Jung, S. B. Park, and S.-K. Ihm, “Local structure and photocatalytic activity of B2O3-SiO2/TiO2 ternary mixed oxides prepared by sol-gel method,” Applied Catalysis B, vol. 51, no. 4, pp. 239–245, 2004.
[18]  K. Y. Jung and S. B. Park, “Enhanced photoactivity of silica-embedded titania particles prepared by sol-gel process for the decomposition of trichloroethylene,” Applied Catalysis B, vol. 25, no. 4, pp. 249–256, 2000.
[19]  Y. Zhang, H. Xu, Y. Xu, H. Zhang, and Y. Wang, “The effect of lanthanide on the degradation of RB in nanocrystalline Ln/TiO2 aqueous solution,” Journal of Photochemistry and Photobiology A, vol. 170, no. 3, pp. 279–285, 2005.
[20]  T. Watanabe, T. Takizawa, and K. Honda, “Photocatalysis through excitation of adsorbates. 1. Highly efficient N-deethylation of rhodamine B adsorbed to cadmium sulfide,” The Journal of Physical Chemistry, vol. 81, no. 19, pp. 1845–1851, 1977.
[21]  C. Zhu, L. Wang, L. Kong et al., “Photocatalytic degradation of AZO dyes by supported TiO2 + UV in aqueous solution,” Chemosphere, vol. 41, no. 3, pp. 303–309, 2000.
[22]  S. Kein, S. Thorimbert, and W. F. Maier, “Amorphous microporous titania–silica mixed oxides: preparation, characterization, and catalytic redox properties,” Journal of Catalysis, vol. 163, no. 2, pp. 476–488, 1996.
[23]  H. Zhang and J. F. Banfield, “Thermodynamic analysis of phase stability of nanocrystalline titania,” Journal of Materials Chemistry, vol. 8, no. 9, pp. 2073–2076, 1998.
[24]  X. Gao and I. E. Wachs, “Titania-silica as catalysts: molecular structural characteristics and physico-chemical properties,” Catalysis Today, vol. 51, no. 2, pp. 233–254, 1999.
[25]  E. J. Nassar, C. R. Neri, P. S. Calefi, and O. A. Serra, “Functionalized silica synthesized by sol-gel process,” Journal of Non-Crystalline Solids, vol. 247, no. 1–3, pp. 124–128, 1999.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133