全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Large Area C60 Film Obtained by Microwave Oven Irradiation from an Organic Resin

DOI: 10.1155/2013/524548

Full-Text   Cite this paper   Add to My Lib

Abstract:

In the present work the synthesis of fullerene thin film produced in a conventional microwave oven from the decomposition of terpenoid is reported. The polycrystalline structure of the sample was determined by X-ray diffraction (XRD); the sample showed several phases, and the main phase corresponds to fullerene ordered in a face-centered cubic structure (FCC), with a lattice parameter ??, with two more structures: one is orthorhombic system with lattice parameters ??, ??, and ??, and the other is the monoclinic system with lattice parameters ??, ??, ??, and ° coexisting also with graphite 2H phase with lattice parameters ??, ??. It was observed in a scanning electron microscopy (SEM) that the sample formed thin films of stacked carbon. The film thickness was measured by a SEM, and it was 140.8 to 523?nm and the macroscopic area of 12?cm2, whereas a high-resolution transmission electron microscopy (HRTEM) revealed that the main phase of the material is C60 ordered in a face-centered cubic structure (FCC). In the sample surface by atomic force microscopy (AFM), islands deposited crystals were observed having symmetry m crystal habit associated with the tetrahedron. 1. Introduction Carbon thin films are important for the development of applications in semiconductors, nano electronics, and aerospace industry due to the physical properties of their crystal structure. These properties are high electric conductivity or semiconductivity, photo conductivity, and optical nonlinearity [1]. Several methods are currently used for the preparation of carbon films [2–5]. In these methods the films are obtained in temperature conditions at ranges of 950–1250°C [6] with different energies from 100 to 1000?eV [7] at pressure from 1 to Torr [8–10] using inert atmospheres or carbon gases as control atmospheres with flowing in a continuous way to obtain small area films with thicknesses from 500?nm to 10?000?nm with a crystalline or amorphous structure [11], making this synthesis expensive. Comparing the carbon film precursors at present, the use of organic resins such as terpenoids has proven to be efficient in obtaining carbon films by using techniques such as CVD [12–17]. Comparing the chemical precursors used in the synthesis of carbon films, it was observed that organic resins present more advantages than the inorganic precursors because some of these resins are environment friendly [18]. It is important to mention that camphor resin has been successfully used in carbon nanomaterials synthesis and also in carbon films, graphene, carbon nanotubes, and other carbon

References

[1]  S. Mohammed Mominuzzaman, M. Rusop, T. Soa, T. Jimbo, and M. Umeno, “Rearrangements of hybridized bonds in nitrogen incorporated camphoric carbon thin films deposited by pulsed laser ablation,” in The International Conference on Mechanical Engineering (ICME '03), pp. 1–4, 2003.
[2]  C. Chen and Z. Lou, “Formation of C60 by reduction of CO2,” Journal of Supercritical Fluids, vol. 50, no. 1, pp. 42–45, 2009.
[3]  A. D. V. Turina, M. V. Nolan, J. A. Zygadlo, and M. A. Perillo, “Natural terpenes: self-assembly and membrane partitioning,” Biophysical Chemistry, vol. 122, no. 2, pp. 101–113, 2006.
[4]  D. M. P. Mingos, Chem.Ind., pp. 596–599, 1994.
[5]  A. H. Jayatissa, T. Gupta, and A. D. Pandya, “Heating effect on C60 films during microfabrication: structure and electrical properties,” Carbon, vol. 42, no. 5-6, pp. 1143–1146, 2004.
[6]  T. D. Burchell, Carbon Materials For Advanced Technologies, Pergamon, 1999.
[7]  A. G. Dall'Asén, M. Verdier, H. Huck, E. B. Halac, and M. Reinoso, “Nanoindentation on carbon thin films obtained from a C60 ion beam,” Applied Surface Science, vol. 252, no. 22, pp. 8005–8009, 2006.
[8]  R.-F. Xiao, “Growth of large fullerene C60 crystals and highly oriented thin films by physical vapor transport,” Journal of Crystal Growth, vol. 174, no. 1-4, pp. 821–827, 1997.
[9]  P. Milani, M. Ferretti, P. Piseri et al., “Synthesis and characterization of cluster-assembled carbon thin films,” Journal of Applied Physics, vol. 82, no. 11, pp. 5793–5798, 1997.
[10]  M. Rusop, X. M. Tian, T. Kinugawa, T. Soga, T. Jimbo, and M. Umeno, “Preparation and characterization of boron-incorporated amorphous carbon films from a natural source of camphoric carbon as a precursor material,” Applied Surface Science, vol. 252, no. 5, pp. 1693–1703, 2005.
[11]  M. S. Dresselhaus, G. Dresselhaus, and P. C. Eklund, Science of Fullerenes and Carbon Nanotubes, Elsevier, New York, NY, USA, 1996.
[12]  X. Y. Zhang and S. K. Manohar, “Microwave synthesis of nanocarbons from conducting polymers,” Chemical Communications, no. 23, pp. 2477–2479, 2006.
[13]  K. Chen, C. Wang, D. Ma, W. Huang, and X. Bao, “Graphitic carbon nanostructures via a facile microwave-induced solid-state process,” Chemical Communications, no. 24, pp. 2765–2767, 2008.
[14]  S. Yim and T. S. Jones, “Growth dynamics of C60 thin films: effect of molecular structure,” Applied Physics Letters, vol. 94, no. 2, Article ID 021911, 3 pages, 2009.
[15]  B. D. Steinberg, E. A. Jackson, A. S. Filatov, A. Wakamiya, M. A. Petrukhina, and L. T. Scott, “Aromatic π-systems more curved than C60. The complete family of all indenocorannulenes synthesized by iterative microwave-assisted intramolecular arylations,” Journal of the American Chemical Society, vol. 131, no. 30, pp. 10537–10545, 2009.
[16]  A. Lew, P. O. Krutzik, M. E. Hart, and A. R. Chamberlin, “Increasing rates of reaction: microwave-assisted organic synthesis for combinatorial chemistry,” Journal of Combinatorial Chemistry, vol. 4, no. 2, pp. 95–105, 2002.
[17]  S. M. Mominuzzaman, T. Soga, T. Jimbo, and M. Umeno, “Camphoric carbon soot: a new target for deposition of diamond-like carbon films by pulsed laser ablation,” Thin Solid Films, vol. 376, no. 1-2, pp. 1–4, 2000.
[18]  A. I. Oreshkin, R. Z. Bakhtizin, J. T. Sadowski, and T. Sakurai, “Epitaxial growth of C60 thin films on the Bi(0001)/Si(111) surface,” Bulletin of the Russian Academy of Sciences, vol. 73, no. 7, pp. 883–885, 2009.
[19]  M. Rusop, T. Kinugawa, T. Soga, and T. Jimbo, “Preparation and microstructure properties of tetrahedral amorphous carbon films by pulsed laser deposition using camphoric carbon target,” Diamond and Related Materials, vol. 13, no. 11-12, pp. 2174–2179, 2004.
[20]  D. Pradhan and M. Sharon, “Electrochemical behavior of amorphous carbon obtained from camphor,” Electrochimica Acta, vol. 50, no. 14, pp. 2905–2910, 2005.
[21]  P. R. Somani, S. P. Somani, and M. Umeno, “Planer nano-graphenes from camphor by CVD,” Chemical Physics Letters, vol. 430, no. 1–3, pp. 56–59, 2006.
[22]  S. M. Mominuzzaman, M. Rusop, T. Soga, T. Jimbo, and M. Umeno, “Nitrogen doping in camphoric carbon films and its application to photovoltaic cell,” Solar Energy Materials and Solar Cells, vol. 90, no. 18-19, pp. 3238–3243, 2006.
[23]  C. O. Kappe and D. Dallinger, “Controlled microwave heating in modern organic synthesis: highlights from the 2004–2008 literature,” Molecular Diversity, vol. 13, no. 2, pp. 71–193, 2009.
[24]  Microwave Processing of Materials: An Emerging Industrial Technology, National Academy Press, Washington, DC, USA, 1994, Publication NMAB-473.
[25]  M. Rusop, S. M. Mominuzzaman, T. Soga, and T. Jimbo, “Properties of a-C:H films grown in inert gas ambient with camphoric carbon precursor of pulsed laser deposition,” Diamond and Related Materials, vol. 13, no. 11-12, pp. 2180–2186, 2004.
[26]  D. Pradhan and M. Sharon, “Opto-electrical properties of amorphous carbon thin film deposited from natural precursor camphor,” Applied Surface Science, vol. 253, no. 17, pp. 7004–7010, 2007.
[27]  S. Adhikari, H. R. Aryal, D. C. Ghimire, G. Kalita, and M. Umeno, “Optical band gap of nitrogenated amorphous carbon thin films synthesized by microwave surface wave plasma CVD,” Diamond and Related Materials, vol. 17, no. 7–10, pp. 1666–1668, 2008.
[28]  K. Kohli, H. Chaudhary, P. Rathee, S. Rathee, and V. Kumar, “Fullerenes: new contour to carbon chemistry,” Pharma Times, vol. 41, no. 2, pp. 9–12, 2009.
[29]  T. Koryu Ishii, Hanbook of Microwave Technology: Aplications, vol. 2, 1995.
[30]  A. T. Johns and D. F. Warne, Engineers’ Hanbook of Industrial Microwave Heating, vol. 25 of IEE Power Series, 1998.
[31]  D. Bogdal, Microwave-Assisted Organic Synthesis: One Hundred Reaction Procedures, Elsevier, New York, NY, USA, 2005.
[32]  A. Stadler, B. H. Yousefi, D. Dallinger et al., “Scalability of microwave-assisted organic synthesis. From single-mode to multimode parallel batch reactors,” Organic Process Research and Development, vol. 7, no. 5, pp. 707–716, 2003.
[33]  R. Martínez-Palou, “Microwave-assisted synthesis using ionic liquids,” Molecular Diversity, vol. 14, pp. 3–25, 2010.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413