Nanotechnology is an emerging technology for fabricating nanostructures where at least one dimension is smaller than 100?nm. This paper explains how single-crystal organic transistors of channel length down to just 7?nm can be fabricated without damaging the organic material. Single crystals of C60, rubrene, and pentacene have been chosen in our structures, but the same process can be used for a wide variety of organics. The method combines high-resolution electron-beam lithography and vacuum device assembly with piezo manipulators. As modern devices are typically designed with short semiconducting channel length, this type of fabrication methods allows downscaling of organic electronic devices for research purposes. 1. Introduction Conjugated organic semiconductors as electronic materials have been the subject of intense research, because they have some processing and performance advantages over conventional semiconductors for low-cost and large-area device applications. The two most widely studied types of devices employing organic semiconductors are organic field effect transistors (OFET) [1] and organic light emitting diodes (OLED) [2]. These devices are currently incorporated into a variety of prototypes for displays and display drivers [3] and, beyond this, have a wide range of other potential applications. In the very recent years, organic materials attracted attention for spin electronics, because of the prospect that the spin relaxation times could be much longer than in inorganic materials [4], primarily as a consequence of the smaller spin-orbit coupling and diminished hyperfine interactions. Due to the intrinsically low mobility of organic compounds, the organic electronic devices cannot readily rival the performance of those based on crystalline inorganic semiconductors; nevertheless, the processing properties and the observed electrical characteristics demonstrated that they can be competitive for applications requiring large-area coverage, structural flexibility, chemical tenability, and low-cost processing. The most widely used organic semiconductors can be broadly classified into two categories: small molecules or oligomers (usually processed in vacuum) and polymers (usually processed by wet chemical techniques). The most representative small molecule compounds employed in this field, having the highest reported mobility, are pentacene and rubrene [5, 6]. On the other hand, among the most studied polymers are the polyphenylene derivatives, of interest mainly for their luminescence (a property required for light emitting diodes) [7] and
References
[1]
S. Liu, H. A. Becerril, M. C. LeMieux, W. M. Wang, J. Hak Oh, and Z. Bao, “Direct patterning of organic-thin-film-transistor arrays via a "dry-taping" approach,” Advanced Materials, vol. 21, no. 12, pp. 1266–1270, 2009.
[2]
O. Nuyken, S. Jungermann, V. Wiederhirn, E. Bacher, and K. Meerholz, “Modern trends in organic light-emitting devices (OLEDs),” Monatshefte fur Chemie, vol. 137, no. 7, pp. 811–824, 2006.
[3]
A. Dodabalapur, Z. Bao, A. Makhija et al., “Organic smart pixels,” Applied Physics Letters, vol. 73, no. 2, pp. 142–144, 1998.
[4]
G. Szulczewski, S. Sanvito, and M. Coey, “A spin of their own,” Nature Materials, vol. 8, no. 9, pp. 693–695, 2009.
[5]
J. Y. Lee, S. Roth, and Y. W. Park, “Anisotropic field effect mobility in single crystal pentacene,” Applied Physics Letters, vol. 88, no. 25, Article ID 252106, 2006.
[6]
V. Podzorov, S. E. Sysoev, E. Loginova, V. M. Pudalov, and M. E. Gershenson, “Single-crystal organic field effect transistors with the hole mobility ~8 cm2/Vs,” Applied Physics Letters, vol. 83, no. 17, pp. 3504–3506, 2003.
[7]
R. H. Friend, R. W. Gymer, A. B. Holmes et al., “Electroluminescence in conjugated polymers,” Nature, vol. 397, pp. 121–128, 1999.
[8]
I. McCulloch, M. Heeney, C. Bailey et al., “Liquid-crystalline semiconducting polymers with high charge-carrier mobility,” Nature Materials, vol. 5, no. 4, pp. 328–333, 2006.
[9]
T. Dürkop, B. M. Kim, and M. S. Fuhrer, “Properties and applications of high-mobility semiconducting nanotubes,” Journal of Physics Condensed Matter, vol. 16, no. 18, pp. R553–R580, 2004.
[10]
S. Iijima, “Helical microtubules of graphitic carbon,” Nature, vol. 354, no. 6348, pp. 56–58, 1991.
[11]
H. W. Kroto, “The stability of the fullerenes Cn, with n = 24, 28, 32, 36, 50, 60 and 70,” Nature, vol. 329, no. 6139, pp. 529–531, 1987.
[12]
N. Tombros, C. Jozsa, M. Popinciuc, H. T. Jonkman, and B. J. Van Wees, “Electronic spin transport and spin precession in single graphene layers at room temperature,” Nature, vol. 448, no. 7153, pp. 571–574, 2007.
[13]
L. Bürgi, T. J. Richards, R. H. Friend, and H. Sirringhaus, “Close look at charge carrier injection in polymer field-effect transistors,” Journal of Applied Physics, vol. 94, no. 9, pp. 6129–6137, 2003.
[14]
S. Kobayashi, T. Takenobu, S. Mon, A. Fujiwara, and Y. Iwasa, “Fabrication and characterization of C60 thin-film transistors with high field-effect mobility,” Applied Physics Letters, vol. 82, no. 25, pp. 4581–4583, 2003.
[15]
Y. Jin, “Structural and optoelectronic properties of C60 rods obtained via a rapid synthesis route,” Journal of Materials Chemistry, vol. 16, pp. 3715–3720, 2006.
[16]
S. Alborghetti, J. M. D. Coey, and P. Stamenov, “Electron and spin transport studies of gated lateral organic devices,” Journal of Applied Physics, In Press.
[17]
N. Koch, A. Kahn, J. Ghijsen et al., “Conjugated organic molecules on metal versus polymer electrodes: demonstration of a key energy level alignment mechanism,” Applied Physics Letters, vol. 82, no. 1, pp. 70–72, 2003.
[18]
D. J. Gundlach, L. Zhou, J. A. Nichols, T. N. Jackson, P. V. Necliudov, and M. S. Shur, “An experimental study of contact effects in organic thin film transistors,” Journal of Applied Physics, vol. 100, no. 2, Article ID 024509, 2006.