ZnO nanoparticles have been synthesized by precipitation method from Zinc nitrate. The powder was characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, selected-area electron diffraction, UV-vis optical absorption, and photoluminescence spectroscopy analyses. XRD patterns showed that ZnO nanoparticles have hexagonal unit cell structure. SEM and TEM pictures reveal the morphology and particle size of prepared ZnO nanoparticles. The UV-vis absorption spectrum shows an absorption band at 355?nm due to ZnO nanoparticles. The photoluminescence spectrum exhibits two emission peaks one at 392?nm corresponding to band gap excitonic emission and another located at 520?nm due to the presence of singly ionized oxygen vacancies. The synthesis method has potential for application in manufacturing units due to ease processing and more economical reagents. 1. Introduction Nowadays, there has been an increasing demand for the development of nanosized semiconductors due to their significant electrical and optical properties which are highly useful in fabricating nanoscaled optoelectronic and electronic devices with multifunctionality [1–3]. Among various semiconducting materials, zinc oxide (ZnO) is a distinctive electronic and photonic wurtzite n-type semiconductor with a wide direct band gap of 3.37?eV and a high exciton binding energy (60?meV) at room temperature [4, 5]. The high exciton binding energy of ZnO would allow for excitonic transitions even at room temperature, which could mean high radiative recombination efficiency for spontaneous emission as well as a lower threshold voltage for laser emission. The lack of a centre of symmetry in wurtzite, combined with a large electromechanical coupling, results in strong piezoelectric and pyroelectric properties and hence the use of ZnO in mechanical actuators and piezoelectric sensors [6, 7]. ZnO is potential candidate for optoelectronic applications in the short wavelength range (green, blue, UV), information storage, and sensors as it exhibits similar properties to GaN [8–10]. ZnO nanoparticles are promising candidates for various applications, such as nanogenerators [11], gas sensors [12], biosensors [13], solar cells [14], varistors [15], photodetectors [16], and photocatalysts [17]. From the literature survey, it was found that various approaches for the preparation of ZnO nanopowders have been developed, namely, sol-gel, microemulsion, thermal decomposition of organic precursor, spray pyrolysis, electrodeposition, ultrasonic, microwave-assisted techniques, chemical
References
[1]
M. S. Tokumoto, V. Briois, C. V. Santilli, and S. H. Pulcinelli, “Preparation of ZnO nanoparticles: structural study of the molecular precursor,” Journal of Sol-Gel Science and Technology, vol. 26, no. 1–3, pp. 547–551, 2003.
[2]
P. Kumar, L. S. Panchakarla, S. V. Bhat, U. Maitra, K. S. Subrahmanyam, and C. N. R. Rao, “Photoluminescence, white light emitting properties and related aspects of ZnO nanoparticles admixed with graphene and GaN,” Nanotechnology, vol. 21, no. 38, Article ID 385701, 2010.
[3]
G. Thomas, “Invisible circuits,” Nature, vol. 389, no. 6654, pp. 907–908, 1997.
[4]
Z. L. Wang, “Nanostructures of zinc oxide,” Materials Today, vol. 7, no. 6, pp. 26–33, 2004.
[5]
C. N. R. Rao and A. Govindaraj, in Nanotubes and Nanowires, H. Kroto, P. O’Brien, and H. Craighead, Eds., The RSC Nanoscience and Nanotechnology Series, Royal Society of Chemistry, London, UK, 2005.
[6]
S. C. Ko, Y. C. Kim, S. S. Lee, S. H. Choi, and S. R. Kim, “Micromachined piezoelectric membrane acoustic device,” Sensors and Actuators, A, vol. 103, no. 1-2, pp. 130–134, 2003.
[7]
D. Zaouk, Y. Zaatar, R. Asmar, and J. Jabbour, “Piezoelectric zinc oxide by electrostatic spray pyrolysis,” Microelectronics Journal, vol. 37, no. 11, pp. 1276–1279, 2006.
[8]
D. H. Zhang, Z. Y. Xue, and Q. P. Wang, “Formation of ZnO nanoparticles by the reaction of zinc metal with aliphatic alcohols,” Journal of Physics D, vol. 35, no. 21, pp. 2837–2840, 2002.
[9]
H. Hayashi, A. Ishizaka, M. Haemori, and H. Koinuma, “Bright blue phosphors in ZnO-WO3 binary system discovered through combinatorial methodology,” Applied Physics Letters, vol. 82, no. 9, pp. 1365–1367, 2003.
[10]
H. T. Ng, B. Chen, J. Li et al., “Optical properties of single-crystalline ZnO nanowires on m-sapphire,” Applied Physics Letters, vol. 82, no. 13, pp. 2023–2025, 2003.
[11]
P. X. Gao, Y. Ding, W. Mai, W. L. Hughes, C. Lao, and Z. L. Wang, “Materials science: conversion of zinc oxide nanobelts into superlattice-structured nanohelices,” Science, vol. 309, no. 5741, pp. 1700–1704, 2005.
[12]
X. L. Cheng, H. Zhao, L. H. Huo, S. Gao, and J. G. Zhao, “ZnO nanoparticulate thin film: preparation, characterization and gas-sensing property,” Sensors and Actuators, B, vol. 102, no. 2, pp. 248–252, 2004.
[13]
E. Topoglidis, A. E. G. Cass, B. O'Regan, and J. R. Durrant, “Immobilisation and bioelectrochemistry of proteins on nanoporous TiO2 and ZnO films,” Journal of Electroanalytical Chemistry, vol. 517, no. 1-2, pp. 20–27, 2001.
[14]
Y. Hames, Z. Alpaslan, A. K?semen, S. E. San, and Y. Yerli, “Electrochemically grown ZnO nanorods for hybrid solar cell applications,” Solar Energy, vol. 84, no. 3, pp. 426–431, 2010.
[15]
W. Jun, X. Changsheng, B. Zikui, Z. Bailin, H. Kaijin, and W. Run, “Preparation of ZnO-glass varistor from tetrapod ZnO nanopowders,” Materials Science and Engineering B, vol. 95, no. 2, pp. 157–161, 2002.
[16]
P. Sharma, K. Sreenivas, and K. V. Rao, “Analysis of ultraviolet photoconductivity in ZnO films prepared by unbalanced magnetron sputtering,” Journal of Applied Physics, vol. 93, no. 7, pp. 3963–3970, 2003.
[17]
P. V. Kamat, R. Huehn, and R. Nicolaescu, “A “sense and shoot” approach for photocatalytic degradation of organic contaminants in water,” Journal of Physical Chemistry B, vol. 106, no. 4, pp. 788–794, 2002.
[18]
M. S. Takumoto, , S. H. Pulcinelli, C. V. Santilli, and V. Briois, Journal of Physical Chemistry B, vol. 107, p. 568, 2003.
[19]
M. Singhal, V. Chhabra, P. Kang, and D. O. Shah, “Synthesis of ZnO nanoparticles for varistor application using Zn-substituted aerosol OT microemulsion,” Materials Research Bulletin, vol. 32, no. 2, pp. 239–247, 1997.
[20]
F. Rataboul, C. Nayral, M. J. Casanove, A. Maisonnat, and B. Chaudret, “Synthesis and characterization of monodisperse zinc and zinc oxide nanoparticles from the organometallic precursor [Zn(C6H11)2],” Journal of Organometalic Chemistry, vol. 643-644, pp. 307–312, 2002.
[21]
K. Okuyama and W. W. Lenggoro, “Preparation of nanoparticles via spray route,” Chemical Engineering Science, vol. 58, no. 3–6, pp. 537–547, 2003.
[22]
A. B. Moghaddam, T. Nazari, J. Badraghi, and M. Kazemzad, “Synthesis of ZnO nanoparticles and electrodeposition of polypyrrole/ZnO nanocomposite film,” International Journal of Electrochemical Science, vol. 4, no. 2, pp. 247–257, 2009.
[23]
Y.-L. Wei and P.-C. Chang, “Characteristics of nano zinc oxide synthesized under ultrasonic condition,” Journal of Physics and Chemistry of Solids, vol. 69, no. 2-3, pp. 688–692, 2008.
[24]
X.-L. Hu, Y.-J. Zhu, and S.-W. Wang, “Sonochemical and microwave-assisted synthesis of linked single-crystalline ZnO rods,” Materials Chemistry and Physics, vol. 88, no. 2-3, pp. 421–426, 2004.
[25]
J.-J. Wu and S.-C. Liu, “Low-temperature growth of well-aligned ZnO nanorods by chemical vapor deposition,” Advanced Materials, vol. 14, no. 3, pp. 215–218, 2002.
[26]
H. J. Zhai, W. H. Wu, F. Lu, H. -S. Wang, and C. Wang, “Effects of ammonia and cetyltrimethylammonium bromide (CTAB) on morphologies of ZnO nano- and micromaterials under solvothermal process,” Materials Chemistry and Physics, vol. 112, no. 3, pp. 1024–1028, 2008.
[27]
M. Bitenc, M. Marin?ek, and Z. Crnjak Orel, “Preparation and characterization of zinc hydroxide carbonate and porous zinc oxide particles,” Journal of the European Ceramic Society, vol. 28, no. 15, pp. 2915–2921, 2008.
[28]
J. Zhou, F. Zhao, Y. Wang, Y. Zhang, and L. Yang, “Size-controlled synthesis of ZnO nanoparticles and their photoluminescence properties,” Journal of Luminescence, vol. 122-123, no. 1-2, pp. 195–197, 2007.
[29]
Z. M. Khoshhesab, M. Sarfaraz, and M. A. Asadabad, “Preparation of ZnO nanostructures by chemical precipitation method,” Synthesis and Reactivity in Inorganic, Metal-Organic and Nano-Metal Chemistry, vol. 41, no. 7, pp. 814–819, 2011.
[30]
JCPDS, Powder Diffraction File, Alphabetical Index, Inorganic Compounds, International Centre for Diffraction Data, Newtown Square, Pa, USA, 1977.
[31]
B. D. Cullity, Elements of X-Ray Diffraction, Addison-Wesley, Reading, Mass, USA, 3rd edition, 1967.
[32]
A. Gupta, H. S. Bhatti, D. Kumar, N. K. Verma, and dan R. P. Tandon, “Nano and Bulk Crystals of ZnO: synthesis and Characterization,” Digest Journal of. Nanomaterials and Biostructures, vol. 1, no. 1, pp. 1–9, 2006.
[33]
Y. D. Jin, J. P. Yang, P. L. Heremans et al., “Single-layer organic light-emitting diode with 2.0% external quantum efficiency prepared by spin-coating,” Chemical Physics Letters, vol. 320, no. 5-6, pp. 387–392, 2000.
[34]
S. Shionoya and W. M. Yen, Eds., Phosphor Handbook, CRC Press, Boca Raton, Fla, USA, 1998.
[35]
L. I. Berger, Semiconductor Materials, CRC Press, Boca Raton, Fla, USA, 1997.
[36]
L. Brus, “Electronic wave functions in semiconductor clusters: experiment and theory,” Journal of Physical Chemistry, vol. 90, no. 12, pp. 2555–2560, 1986.
[37]
X. Wang, Y. Ding, C. J. Summers, and Z. L. Wang, “Large-scale synthesis of six-nanometer-wide ZnO nanobelts,” Journal of Physical Chemistry B, vol. 108, no. 26, pp. 8773–8777, 2004.
[38]
N. Chestnoy, T. D. Harris, R. Hull, and L. E. Brus, “Luminescence and photophysics of CdS semiconductor clusters: the nature of the emitting electronic state,” Journal of Physical Chemistry, vol. 90, no. 15, pp. 3393–3399, 1986.
[39]
J. R. Heath and J. J. Shiang, “Covalency in semiconductor quantum dots,” Chemical Society Reviews, vol. 27, no. 1, pp. 65–71, 1998.
[40]
M. H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber, and P. Yang, “Catalytic growth of zinc oxide nanowires by vapor transport,” Advanced Materials, vol. 13, no. 2, pp. 113–116, 2001.
[41]
G. Williams and P. V. Kamat, “Graphene-semiconductor nanocomposites: excited-state interactions between ZnO nanoparticles and graphene oxide,” Langmuir, vol. 25, no. 24, pp. 13869–13873, 2009.
[42]
B. Srinivasa Rao, B. Rajesh Kumar, V. Rajagopal Reddy, and T. Subba Rao, “Preparation and characterization of CdS nanoparticles by chemical co-precipitation technique,” Chalcogenide Letters, vol. 8, no. 3, pp. 177–185, 2011.