全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Heterogeneous Catalysis of C–O Bond Cleavage for Cellulose Deconstruction: A Potential Pathway for Ethanol Production

DOI: 10.1155/2014/634679

Full-Text   Cite this paper   Add to My Lib

Abstract:

Due to difficulty deconstructing the linkages between lignin, hemicellulose and cellulose during the conversion of cellulose to sugar, the commercial production of cellulosic ethanol is limited. This can be overcome by using a high surface-area metal catalyst. In this study, high surface-area metal NPs were synthesized using 20 mM of chloroplatinic acid and cobalt chloride prepared in THF with 0.1 mM of generation four poly(amido)amine (PAMAM) terminated dendrimer (G4-NH2) prepared in methanol and stirred for 2 hours under nitrogen. Subsequently, Pt+2 and Co+2 ions were reduced to metal zero via introduction of sodium borohydride and centrifuged for complete separation. The resulting product was heated for 2.5 hours at ~200°C. After cooling, 2.0 grams of crushed peanut shells was added to 40?mL of distilled tert-butyl methyl ether along with the separated metal nanocatalyst and refluxed on condenser at 20% for 24 hours. UV-Vis and XRD analyses show the formation of Pt and Co nanoparticles using dendrimer templating methodology. Both TLC and HPLC show that, upon introduction of the metal catalyst into the suspension of “cellulose” in TBME, separation of the cellulose into small molecules is evident. That is, release of sugar molecules via C–O bond cleavage is facilitated by the formed nanocatalysts. 1. Introduction The anticipated decline in oil production, increased demand on energy usage, and depletion of worldwide petroleum oil reserves have renewed interests in developing alternative energy sources, in particular biofuels. Currently in the United States, 97% of nonrenewable petroleum is used as a source of fuel for vehicles and other gas burning systems [1]. According to the 2012 Consumer Energy Report, the USA imports about 58% of its petroleum, crude and refined, from the western hemisphere, and consumed 20.7 million barrels of petroleum products in 2007 [2]. One logical solution to this growing energy pandemonium is the development of a sustainable energy alternative, biofuels, that eliminates the United States (and other countries) from the dependency on foreign petroleum imports and the negative impact of anthropogenic CO2 on the environment. In essence, biofuels use less fossil fuel and, thus, eliminate the fuels formed by natural resources such as anaerobic decomposition of buried dead organisms: coal, petroleum, and natural gases with high percentages of carbon. Since the 1970s, there have been many types of biomass explored, ranging from agricultural wastes (straw, olive pits, sweet potato roots, and nut shells) to energy crops (Miscanthus

References

[1]  S. C. Davis, “Transportation Energy Data Book 18,” Tech. Rep. ORNL-6941, Oak Ridge National Laboratory, Oak Ridge, Tenn, USA, September1998, http://cta.ornl.gov/data/index.shtml.
[2]  U.S. Consumer Energy Report, February 2012, http://www.energytrendsinsider.com/research/crude-oil/where-the-us-gets-its-oil-from/.
[3]  D. Mohan, C. U. Pittman Jr., and P. H. Steele, “Pyrolysis of wood/biomass for bio-oil: a critical review,” Energy & Fuels, vol. 20, no. 3, pp. 848–889, 2006.
[4]  “Technical, Environmental and Economic Feasibility of Bio-oil in New-Hampshire's North Country,” UNH Bio-oil Team Report (Final Report submitted to NH IRC), August 2002www.unh.edu/p2/biooil/bounhif.pdf.
[5]  V. Balan, et al., “Process for producing sugars and ethanol using corn stillage,” US Patent, 2009.
[6]  M. Darapuneni, B. A. Stewart, D. B. Parker, C. A. Robinson, A. J. Megel, and R. E. DeOtte Jr., “Agronomic evaluation of ashes produced from combusting beef cattle manure for an energy source at an ethanol production facility,” Applied Engineering in Agriculture, vol. 25, no. 6, pp. 895–904, 2009.
[7]  USDA Agricultural Baseline Projections to 2015, Paul Westcott, ERS Contact, OCE-2006-1, USDA, Office of the Chief Economist, World Agricultural Outlook Board, February 2006.
[8]  “Fuel Ethanol: Background and Public Policy Issues,” CRS Report for Congress 2006.
[9]  A. Demirbas, “Bioethanol from cellulosic materials: a renewable motor fuel from biomass,” Energy Sources, vol. 27, no. 4, pp. 327–337, 2005.
[10]  J.-C. Frigon and S. R. Guiot, “Biomethane production from starch and lignocellulosic crops: A comparative review,” Biofuels, Bioproducts and Biorefining, vol. 4, no. 4, pp. 447–458, 2010.
[11]  L. S. E. Putri, Nasrulloh, and A. Haris, “Bioethanol production from sweet potato using combination of acid and enzymatic hydrolysis,” in Proceedings of the 2nd International Conference on Mechanical and Aerospace Engineering (ICMAE '11), pp. 1767–1772, Trans Tech Publications, Bangkok, Thailand, July 2011.
[12]  L. Bai, H. Wan, and S. C. Street, “Preparation of ultrafine FePt nanoparticles by chemical reduction in PAMAM-OH template,” Colloids and Surfaces A, vol. 349, no. 1–3, pp. 23–28, 2009.
[13]  K. Esumi, A. Suzuki, A. Yamahira, and K. Torigoe, “Role of poly (amidoamine) dendrimers for preparing nanoparticles of gold, platinum, and silver,” Langmuir, vol. 16, no. 6, pp. 2604–2608, 2000.
[14]  F. Zeng and S. C. Zimmerman, “Dendrimers in supramolecular chemistry: From molecular recognition to self-assembly,” Chemical Reviews, vol. 97, no. 5, pp. 1681–1712, 1997.
[15]  H. Ye, R. W. J. Scott, and R. M. Crooks, “Synthesis, characterization, and surface immobilization of platinum and palladium nanoparticles encapsulated within amine-terminated poly(amidoamine) dendrimers,” Langmuir, vol. 20, no. 7, pp. 2915–2920, 2004.
[16]  A. Fukuoka and P. L. Dhepe, “Catalytic conversion of cellulose into sugar alcohols,” Angewandte Chemie International Edition, vol. 45, no. 31, pp. 5161–5163, 2006.
[17]  V. B. Agbor, N. Cicek, R. Sparling, A. Berlin, and D. B. Levin, “Biomass pretreatment: Fundamentals toward application,” Biotechnology Advances, vol. 29, no. 6, pp. 675–685, 2011.
[18]  J. Zakzeski, P. C. A. Bruijnincx, A. L. Jongerius, and B. M. Weckhuysen, “The catalytic valorization of lignin for the production of renewable chemicals,” Chemical Reviews, vol. 110, no. 6, pp. 3552–3599, 2010.
[19]  J. M. Nichols, L. M. Bishop, R. G. Bergman, and J. A. Ellman, “Catalytic C-O bond cleavage of 2-aryloxy-1-arylethanols and its application to the depolymerization of lignin-related polymers,” Journal of the American Chemical Society, vol. 132, no. 36, pp. 12554–12555, 2010.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133