全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Ordered Porous Nanomaterials: The Merit of Small

DOI: 10.1155/2013/257047

Full-Text   Cite this paper   Add to My Lib

Abstract:

This paper will introduce the reader to some of the “classical” and “new” families of ordered porous materials which have arisen throughout the past decades and/or years. From what is perhaps the best-known family of zeolites, which even now to this day is under constant research, to the exciting new family of hierarchical porous materials, the number of strategies, structures, porous textures, and potential applications grows with every passing day. We will attempt to put these new families into perspective from a synthetic and applied point of view in order to give the reader as broad a perspective as possible into these exciting materials. “This work is dedicated to Professor Vicente Berenguer-Navarro” 1. Introduction Considering the history of mankind, its development is unavoidably linked to technology, more precisely to the development of materials and methods which have enabled us to go beyond our own frontiers. Focusing more on the matter at hand, which is porous materials, we can find several remarkable examples throughout ancient and modern history about the use of porous carbon materials for a wide variety of applications. For instance, in 3700 BC we find the earliest use of a porous form of carbon. Charcoal was used by Egyptians and Sumerians for the reduction of different metal ores (mainly copper, tin, and zinc) in the manufacture of bronze. This material was also used as domestic smokeless fuel. This example alone clearly shows how even some of the most advanced civilizations of their time have employed porous materials in their technological tree. The earliest recorded example in which porosity of the material comes fully into play is in 1500 BC, in Egyptian papyri describing the use of charcoal to adsorb odorous vapors from infected wounds and from within the intestinal tract. The fact that we find these very early examples linked to a civilization which dominated a vast empire for several thousands of years should come as no coincidence. In 450 BC we can find excellent examples of how the porosity of carbon materials is employed as a means to purify drinking water in Hindu documentation and in Phoenician trading ship records. In 400 BC Hippocrates and Pliny the Elder recorded the use of charcoal to treat a wide range of illnesses and maladies including epilepsy, chlorosis, and anthrax. In short, porous materials have greatly helped modern civilizations from the very infancy of mankind, and even if in ancient times the people could only guess as to how or why they worked, the fact is that their usefulness is very well documented.

References

[1]  á. Linares-Solano and D. Cazorla-Amorós, “Chapter seventeen—adsorption on activated carbon fibers,” in Adsorption by Carbons, E. J. Bottani and J. M. D. Tascón, Eds., pp. 431–454, Elsevier, 2008.
[2]  D. Lozano-Castelló, M. Jordá-Beneyto, D. Cazorla-Amorós et al., “Characteristics of an activated carbon monolith for a helium adsorption compressor,” Carbon, vol. 48, no. 1, pp. 123–131, 2010.
[3]  B. McEnaney, “Properties of sctivated carbons,” in Handbook of Porous Solids, F. Schüth, K. S. W. Sing, and J. Weitkamp, Eds., pp. 1828–1863, John Wiley & Sons, 3 edition, 2002.
[4]  C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli, and J. S. Beck, “Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism,” Nature, vol. 359, no. 6397, pp. 710–712, 1992.
[5]  J. S. Beck, J. C. Vartuli, W. J. Roth et al., “A new family of mesoporous molecular sieves prepared with liquid crystal templates,” Journal of the American Chemical Society, vol. 114, no. 27, pp. 10834–10843, 1992.
[6]  A. F. Cronstedt, “Natural zeolite and minerals,” Svenska Vetenskaps Akademiens Handlingar Stockholm, vol. 17, p. 120, 1756.
[7]  H. Eichorn, “Ueber die Einwirkung verdünnter Salzl?sungen auf Silicate,” Annalen der Physik und Chemie, vol. 105, pp. 126–133, 1858.
[8]  H. de St. Claire-Deville, “Reproduction de la levyne,” Comptes Rendus, vol. 54, no. 1862, pp. 324–327, 1862.
[9]  J. Lemberg, “Ueber SiKcatumwandlungen,” Zeitschrift der Deutschen Geologischen Gesellschaft, vol. 28, pp. 519–621, 1876.
[10]  F. Clark, “Experiments relative to the constitution of pectolite, pyrophyllite, calamine, and analcite,” American Journal of Science, vol. 8, pp. 245–257, 1899.
[11]  G. Steiger, “über basische Substitutionen in den Zeolithen,” Zeitschrift Für Anorganische Und Allgemeine Chemie, vol. 46,, no. 1, pp. 197–207, 1905.
[12]  W. H. Taylor, “The structure of analcite (NaAlSi2O6.H2O). Zeitschrift für,” Zeitschrift für Kristallographie, vol. 74, pp. 1–19, 1930.
[13]  J. W. McBain, The Sorption of Gases and Vapours by Solids, Chapter 5, Routledge and Sons, London, UK, 1932.
[14]  R. M. Barrer, “The sorption of polar and non-polar gases by zeolites,” Proceedings of the Royal Society A, vol. 167, pp. 392–420, 1938.
[15]  D. W. Breck, W. G. Eversole, and R. M. Milton, “Crystalline zeolites. I. The properties of a new synthetic zeolite, type A,” Journal of the American Chemical Society, vol. 78, no. 23, pp. 5963–5971, 1956.
[16]  R. M. Barrer, U.S. Patent no. 2,822,244, 1956.
[17]  D. W. Breck and E. M. Flanigen, in Molecular Sieves, p. 47, Society of Chemical Industry, London, UK, 1968.
[18]  R. M. Barrer, “Synthesis of a zeolitic mineral with chabazite-like sorptive properties,” Journal of the Chemical Society, pp. 127–132, 1948.
[19]  R. M. Barrer, L. Hinds, and E. A. White, “The hydrothermal chemistry of silicates. Part III. Reactions of analcite and leucite,” Journal of the Chemical Society, pp. 1466–1475, 1953.
[20]  R. M. Barrer and C. Marcilly, “Hydrothermal chemistry of silicates. Part XV. Synthesis and nature of some salt-bearing aluminosilicates,” Journal of the Chemical Society A, pp. 2735–2745, 1970.
[21]  R. M. Milton, US Patent no. 2,882,243, 1959.
[22]  R. M. Milton, US Patent no. 2,882,244, 1959.
[23]  R. M. Milton, “Molecular sieve science and technology,” in Zeolite Synthesis, M. L. Occelli and H. E. Robson, Eds., vol. 398 of Acs Symposium Series, American Chemical Society, 1989.
[24]  E. M. Flanigen and D. W. Breck, in Proceedings of the 137th Meeting of the ACS, Abstracts, p. 33-M, Division of Inorganic Chemistry, Cleveland, Ohio, USA, 1960.
[25]  E. M. Flanigen and D. W. Breck, in Proceedings of the 137th Meeting of the ACS, Division of Inorganic Chemistry, Cleveland, Ohio, USA, 1960, Paper no. 82: Crystalline zeolites, V-Growth of zeolite crystals from gels.
[26]  D. W. Breck, Zeolite Molecular Sieves, John Wiley & Sons, New York, NY, USA, 1974.
[27]  D. W. Breck, “Crystalline molecular sieves,” Journal of Chemical Education, vol. 41, no. 12, p. 684, 1964.
[28]  J. Weitkamp and L. Puppe, Catalysis and Zeolites; Fundamentals and Applications, Springer, Berlin, Germany, 1999.
[29]  H. van Bekkum, E. M. Flanigen, P. A. Jacobs, and J. C. Jansen, Introduction to Zeolite Science and Practice, Elsevier, Amsterdam, The Netherland, 2001.
[30]  E. G. Derouane, “Zeolites as solid solvents,” Journal of Molecular Catalysis A, vol. 134, no. 1–3, pp. 29–45, 1998.
[31]  A. Dyer, An Introduction to Zeolite Molecular Sieves, John Wiley & Sons, Chichester, UK, 1988.
[32]  Ch. Baerlocher, W. M. Meier, and D. H. Olson, Atlas of Zeolite Structure Types, Elsevier, Amsterdam, The Netherland, 6th edition, 2007.
[33]  W. L?ewenstein, “The distribution of aluminum in the tetrahedra of silicates and aluminates,” American Mineralogist, vol. 39, p. 92, 1954.
[34]  R. M. Barrer, Hydrothermal Chemistry of Zeolites, Academic Press, London, UK, 1987.
[35]  C. S. Cundy and P. A. Cox, “The hydrothermal synthesis of zeolites: history and development from the earliest days to the present time,” Chemical Reviews, vol. 103, no. 3, pp. 663–701, 2003.
[36]  A. Corma and M. E. Davis, “Issues in the synthesis of crystalline molecular sieves: towards the crystallization of low framework-density structures,” ChemPhysChem, vol. 5, no. 3, pp. 304–313, 2004.
[37]  R. A. van Santen, G. Ooms, C. J. J. den Ouden, B. W. van Beest, and M. F. M. Post, “Computational studies of zeolite framework stability,” in Zeolite Synthesis, M. L. Occelli and H. E. Robson, Eds., vol. 398 of ACS Symposium Series, pp. 617–633, American Chemical Society, 1989.
[38]  A. Navrotsky, I. Petrovic, Y. Hu, C. Y. Chen, and M. E. Davis, “Little energetic limitation to microporous and mesoporous materials,” Microporous Materials, vol. 4, no. 1, pp. 95–98, 1995.
[39]  P. M. Piccione, S. Yang, A. Navrotsky, and M. E. Davis, “Thermodynamics of pure-silica molecular sieve synthesis,” Journal of Physical Chemistry B, vol. 106, no. 14, pp. 3629–3638, 2002.
[40]  C. S. Cundy and P. A. Cox, “The hydrothermal synthesis of zeolites: precursors, intermediates and reaction mechanism,” Microporous and Mesoporous Materials, vol. 82, no. 1-2, pp. 1–78, 2005.
[41]  R. M. Barrer, J. W. Baynham, F. W. Bultitude, and W. M. Meier, “Hydrothermal chemistry of the silicates. Part VIII. Low-temperature crystal growth of aluminosilicates, and of some gallium and germanium analogues,” Journal of the Chemical Society, pp. 195–208, 1959.
[42]  G. T. Kerr, “Chemistry of crystalline aluminosilicates. I. Factors affecting the formation of zeolite A,” The Journal of Physical Chemistry, vol. 70, no. 4, pp. 1047–1050, 1966.
[43]  G. T. Kerr, “Crystallization of sodium zeolite A,” Zeolites, vol. 9, no. 5, p. 451, 1989.
[44]  J. Ciric, “Kinetics of zeolite A crystallization,” Journal of Colloid And Interface Science, vol. 28, no. 2, pp. 315–324, 1968.
[45]  S. P. Zhdanov, “Some problems of zeolite crystallization,” in Molecular Sieve Zeolites-I, E. M. Flanigen and L. B. Sand, Eds., vol. 101 of Advances in Chemistry, pp. 20–43, ACS Publications, Washington, DC, USA, 1971.
[46]  C. L. Angell and W. H. Flank, “Mechanism of zeolite A synthesis,” in Molecular Sieves-II, J. R. Katzer, Ed., vol. 40 of ACS Symposium Series, pp. 194–206, 1977.
[47]  B. D. McNicol, G. T. Pott, and K. R. Loos, “Spectroscopic studies of zeolite synthesis,” Journal of Physical Chemistry, vol. 76, no. 23, pp. 3388–3390, 1972.
[48]  B. D. McNicol, G. T. Pott, K. R. Loos, and N. Mulder, “Spectroscopic studies of zeolite synthesis: evidence for a solid-state mechanism,” in Molecular Sieves, W. M. Meier and J. B. Uytterhoeven , Eds., vol. 21 of Advances in Chemistry, pp. 152–161, American Chemical Society, 1973.
[49]  A. Culfaz and L. B. Sand, “Mechanism of nucleation and crystallization of zeolites from gels,” in Molecular Sieves, W. M. Meier and J. B. Uytterhoeven, Eds., vol. 121 of Advances in Chemistry, pp. 140–151, American Chemical Society, 1973.
[50]  H. Kacirek and H. Lechert, “Rates of crystallization and a model for the growth of NaY zeolites,” Journal of Physical Chemistry, vol. 80, no. 12, pp. 1291–1296, 1976.
[51]  S. H. Park, R. W. Grobe Kunstlave, H. Graetsch, and H. Gies, “The thermal expansion of the zeolites MFI, AFI, DOH, DDR, and MTN in their calcined and as synthesized forms,” in Progress in Zeolite and Microporous Materials, Studies in Surface Science and Catalysis, H. Chon, S. K. Ihm, and Y. S. Uh, Eds., vol. 105, pp. 1989–1994, Elsevier, Amsterdam, The Netherlands, 1997.
[52]  á. Berenguer-Murcia, J. García-Martínez, D. Cazorla-Amorós, á. Linares-Solano, and A. B. Fuertes, “Silicalite-1 membranes supported on porous carbon discs,” Microporous and Mesoporous Materials, vol. 59, no. 2-3, pp. 147–159, 2003.
[53]  E. G. Derouane, S. Detremmerie, Z. Gabelica, and N. Blom, “Synthesis and characterization of ZSM-5 type zeolites I. physico-chemical properties of precursors and intermediates,” Applied Catalysis, vol. 1, no. 3-4, pp. 201–224, 1981.
[54]  Z. Gabelica, E. G. Derouane, and N. Blom, “Synthesis and characterization of pentasil type zeolites. II. Structure-directing effect of the organic base or cation,” Applied Catalysis, vol. 5, no. 1, pp. 109–117, 1983.
[55]  Z. Gabelica, N. Blom, and E. G. Derouane, “Synthesis and characterization of zsm-5 type zeolites III. A critical evaluation of the role of alkali and ammonium cations,” Applied Catalysis, vol. 5, no. 2, pp. 227–248, 1983.
[56]  Z. Gabelica, E. G. Derouane, and N. Blom, “Factors affecting the synthesis of pentasil zeolites,” in Catalytic Materials, T. E. Whyte Jr., R. A. Dalla Betta, E. G. Derouane, and R. T. K. Baker, Eds., vol. 248 of ACS Symposium Series, pp. 219–236, 1984.
[57]  P. Bodart, J. B. Nagy, Z. Gabelica, and E. G. Derouane, “Factors governing the synthesis of zeolites from silicoaluminate hydrogels: a comparative study of the crystallization mechanisms of zeolites Y, mordenite, and ZSM-5,” Journal of Chemical Physics, vol. 83, no. 11-12, pp. 777–790, 1986.
[58]  C. D. Chang and A. T. Bell, “Studies on the mechanism of ZSM-5 formation,” Catalysis Letters, vol. 8, no. 5-6, pp. 305–316, 1991.
[59]  S. L. Burkett and M. E. Davis, “Mechanism of structure direction in the synthesis of Si-ZSM-5: an investigation by intermolecular 1H-29Si CP MAS NMR,” Journal of Physical Chemistry, vol. 98, no. 17, pp. 4647–4653, 1994.
[60]  S. L. Burkett and M. E. Davis, “Mechanisms of structure direction in the synthesis of pure-silica zeolites. 1. synthesis of TPA/Si-ZSM-5,” Chemistry of Materials, vol. 7, no. 5, pp. 920–928, 1995.
[61]  S. L. Burkett and M. E. Davis, “Mechanism of structure direction in the synthesis of pure-silica zeolites. 2. Hydrophobic hydration and structural specificity,” Chemistry of Materials, vol. 7, no. 8, pp. 1453–1463, 1995.
[62]  R. Ravishankar, C. Kirschhock, B. J. Schoeman et al., “Physicochemical characterization of silicalite-1 nanophase material,” Journal of Physical Chemistry B, vol. 102, no. 15, pp. 2633–2639, 1998.
[63]  R. Ravishankar, C. E. A. Kirschhock, P. P. Knops-Gerrits et al., “Characterization of nanosized material extracted from clear suspensions for MFI zeolite synthesis,” Journal of Physical Chemistry B, vol. 103, no. 24, pp. 4960–4964, 1999.
[64]  C. E. A. Kirschhock, R. Ravishankar, F. Verspeurt, P. J. Grobet, P. A. Jacobs, and J. A. Martens, “Identification of precursor species in the formation of MFI zeolite in the TPAOH-TEOS-H2O system,” Journal of Physical Chemistry B, vol. 103, no. 24, pp. 4965–4971, 1999.
[65]  C. E. A. Kirschhock, R. Ravishankar, L. Van Looveren, P. A. Jacobs, and J. A. Martens, “Mechanism of transformation of precursors into nanoslabs in the early stages of MFI and MEL zeolite formation from TPAOH-TEOS-H2O and TBAOH-TEOS-H2O mixtures,” Journal of Physical Chemistry B, vol. 103, no. 24, pp. 4972–4978, 1999.
[66]  C. E. A. Kirschhock, R. Ravishankar, P. A. Jacobs, and J. A. Martens, “Aggregation mechanism of nanoslabs with zeolite MFI-type structure,” Journal of Physical Chemistry B, vol. 103, no. 50, pp. 11021–11027, 1999.
[67]  C. E. A. Kirschhock, V. Buschmann, S. Kremer et al., “Zeosil nanoslabs: building blocks in nPr4N+-mediated synthesis of MFI zeolite,” Angewandte Chemie—International Edition, vol. 40, no. 14, pp. 2637–2640, 2001.
[68]  C. E. A. Kirschhock, S. P. B. Kremer, P. J. Grobet, P. A. Jacobs, and J. A. Martens, “New evidence for precursor species in the formation of MFI zeolite in the tetrapropylammonium hydroxide-tetraethyl orthosilicate-water system,” Journal of Physical Chemistry B, vol. 106, no. 19, pp. 4897–4900, 2002.
[69]  R. M. Barrer and P. J. Denny, “Hydrothermal chemistry of the silicates. Part IX. Nitrogenous aluminosilicates,” Journal of the Chemical Society, pp. 971–982, 1961.
[70]  G. T. Kerr and G. T. Kokotailo, “Sodium zeolite ZK-4, a new synthetic crystalline aluminosilicate,” Journal of the American Chemical Society, vol. 83, no. 22, p. 4675, 1961.
[71]  G. T. Kerr, “Chemistry of crystalline aluminosilicates. II. The synthesis and properties of zeolite ZK-4,” Inorganic Chemistry, vol. 5, no. 9, pp. 1537–1539, 1966.
[72]  R. Aiello and R. M. Barrer, “Hydrothermal chemistry of silicates. Part XIV. Zeolite crystallisation in presence of mixed bases,” Journal of the Chemical Society A, pp. 1470–1475, 1970.
[73]  H. Khatami, in Proceedings of 3rd International Conference on Molecular Sieves, J. B. Uytterhoeven, Ed., pp. 167–173, Leuven University Press, 1973.
[74]  B. M. Lok, T. R. Cannan, and C. A. Messina, “The role of organic molecules in molecular sieve synthesis,” Zeolites, vol. 3, no. 4, pp. 282–291, 1983.
[75]  E. W. Valyocsik, US Patent no. 4,585,747, 1986.
[76]  R. H. Daniels, G. T. Kerr, and L. D. Rollmann, “Cationic polymers as templates in zeolite crystallization,” Journal of the American Chemical Society, vol. 100, no. 10, pp. 3097–3100, 1978.
[77]  T. Chatelain, J. Patarin, F. Brendle, F. Dougnier, J.-L. Guth, and P. Schulz, “Studies in surface science and catalysis,” in Progress in Zeolite and Microporous Materials, H. Chon and S. I. Ibm, Eds., vol. l05, pp. 173–180, Elsevier, Amsterdam, The Netherlands, 1997.
[78]  K. J. Balkus, A. G. Gabrielov, and N. Sandler, “Molecular sieve synthesis using metallocenes as structure directing agents,” in Materials Research Society Symposium Proceedings, E. Iglesia, Ed., vol. 368, pp. 369–375, 1995.
[79]  T. V. Harris and S. I. Zones, “Zeolites and related microporous materials state of the art,” in Studies in Surface Science and Catalysis, J. Weitkamp, H. G. Karge, H. Pfeifer, and W. Holderich, Eds., vol. 84, p. 29, Elsevier, Amsterdam, The Netherlands, 1994.
[80]  D. W. Lewis, C. M. Freeman, and C. R. A. Catlow, “Predicting the templating ability of organic additives for the synthesis of microporous materials,” Journal of Physical Chemistry, vol. 99, no. 28, pp. 11194–11202, 1995.
[81]  D. W. Lewis, G. Sankar, J. K. Wyles, J. M. Thomas, C. R. A. Callow, and D. J. Willock, “Synthesis of a small-pore microporous material using a computationally designed template,” Angewandte Chemie—International Edition, vol. 36, no. 23, pp. 2675–2677, 1997.
[82]  http://www.iza-online.org/.
[83]  http://www.iza-structure.org/.
[84]  S. Hansen and L. F?lth, “X-ray study of the nepheline hydrate I structure,” Zeolites, vol. 2, no. 3, pp. 162–166, 1982.
[85]  R. M. Barrer and E. A. D. White, “The hydrothermal chemistry of silicates. Part II. Synthetic crystalline sodium aluminosilicates,” Journal of the Chemical Society, pp. 1561–1571, 1952.
[86]  A. M. Healey, G. M. Johnson, and M. T. Weller, “The synthesis and characterisation of JBW-type zeolites. Part A: sodium/potassium aluminosilicate, Na2K[Al3Si3O12]·0.5H2O,” Microporous and Mesoporous Materials, vol. 37, no. 1-2, pp. 153–163, 2000.
[87]  T. H. Müller-Kirschbaum and E. J. Smulders, “Facing future's challenges-European laundry products on the threshold of the 21st century,” in Proceedings of the 4th World Conference and Exhibition on Detergents, Montreux, Switzerland, October 1998.
[88]  C. J. Adams, A. Araya, S. W. Carr et al., “Zeolite MAP: the new detergent zeolite,” in Progress in Zeolite and Microporous Materials, vol. 105 of Studies in Surface Science and Catalysis, p. 1667, Elsevier, Amsterdam, The Netherland, 1997.
[89]  T. J. Osinga, Journal of the 45th SEPAWA-Congress, Bad Dürkheim, Germany, p. 78, 1998.
[90]  H. G. Hauthal, “Detergent zeolites in an ecobalance spotlight,” S?FW-Journal, vol. 122, no. 13, pp. 899–911, 1996.
[91]  H. P. Bauer, “Production of silicates and zeolites for detergent industry,” in Handbook of Detergents: Part F, U. Zoller and P. Sosis, Eds., chapter 22, CRC Press, Boca Ratón, Fla, USA, 2008.
[92]  W. Vermeiren and J. P. Gilson, “Impact of zeolites on the petroleum and petrochemical industry,” Topics in Catalysis, vol. 52, no. 9, pp. 1131–1161, 2009.
[93]  “The intelligence report: Business Shift in the Global Catalytic Process Industries 2005–2011,” The Catalyst Group Resources, May 2006.
[94]  World Catalysts, The Freedonia Group, January 2007.
[95]  K. Tanabe and W. F. H?lderich, “Industrial application of solid acid-base catalysts,” Applied Catalysis A, vol. 181, no. 2, pp. 399–434, 1999.
[96]  M. Guisnet and J. P. Gilson, “Introduction to zeolite science and technology,” in Zeolites for Cleaner Technologies, Guisnet and J. P. Gilson, Eds., p. 1, Imperial College Press, London, UK, 2005.
[97]  J. P. Wauquier, Le Raffinage du Pétrole: Pétrole Brut, Produits Pétroliers, Schémas de Fabrication, Technip, Paris, France, 1994.
[98]  P. Leprince, Le Raffinage du Pétrole: Procédés de Transformation, Technip, Paris, France, 1998.
[99]  R. A. Meyers, Handbook of Petroleum Refining Processes, McGraw-Hill, New York, NY, USA, 3rd edition, 2004.
[100]  D. S. J. Jones and P. R. Pujado, Handbook of Petroleum Processing, Springer, Dordrecht, The Netherlands, 2006.
[101]  R. A. Sheldon, “Catalysis and pollution prevention,” Chemistry and Industry, vol. 1, pp. 12–15, 1997.
[102]  R. H. Jensen, “Refining processes: setting the scene,” in Zeolites for Cleaner Technologies, M. Guisnet and J. P. Gilson, Eds., p. 75, Imperial College Press, London, UK, 2005.
[103]  S. T. Sie, “Past, present and future role of microporous catalysts in the petroleum industry,” Studies in Surface Science and Catalysis, vol. 85, pp. 587–631, 1994.
[104]  S. T. Sie, in Handbook of Heterogeneous Catalysis, G. Ertl, H. Knozinger, and J. Weitkamp, Eds., p. 1998, VCH, Weinheim, Germany, 1997.
[105]  F. Schmidt, E. K. K?hler, M. Guisnet, and J. P. Gilson, Eds., Zeolites for Cleaner Technologies, Imperial College Press, London, UK, 2005.
[106]  H. F. Rase, Handbook of Commercial Catalysts: Heterogeneous Catalysts, CRC Press, London, UK, 2000.
[107]  T. F. Degnan and C. R. Kennedy, “Impact of catalyst acid/metal balance in hydroisomerization of normal paraffins,” Chemical Engineering Journal, vol. 39, pp. 607–614, 1993.
[108]  G. J. Anton and A. M. Aitani, Eds., Catalytic Naphtha Reforming, Marcel Dekker, New York, NY, USA, 2004.
[109]  S. Saito, K. Hirabayashi, S. Shibata, T. Kondo, K. Adachi, and S. Inoue, in Proceedings of the NPRA Annual Meeting, AM-92-38, 1992.
[110]  N. J. Blom EP, “Modified crystalline aluminosilicate and method of preparing the same,” EP 0434052, assigned to Haldor Topsoe A/S, 1991.
[111]  T. C. Thai and L. F. Albright, “Thermal cracking of hydrocarbons,” in Encyclopedia of Chemical Processing, Thermal Cracking of Hydrocarbons, S. Lee, Ed., p. 2975, Taylor & Francis, New York, NY, USA, 2006.
[112]  C. R. Marcilly, “Where and how shape selectivity of molecular sieves operates in refining and petrochemistry catalytic processes,” Topics in Catalysis, vol. 13, no. 4, pp. 357–366, 2000.
[113]  J. Magne-Drisch, J. F. Joly, E. Merlen, and F. Alario, US Patent no. 6635791, 2003.
[114]  C. Perego and P. Ingallina, “Recent advances in the industrial alkylation of aromatics: new catalysts and new processes,” Catalysis Today, vol. 73, no. 1-2, pp. 3–22, 2002.
[115]  C. Ringelhan, G. Burgfels, J. G. Neumayr, W. Seuffert, J. Klose, and V. Kurth, “Conversion of naphthenes to a high value steamcracker feedstock using H-ZSM-5 based catalysts in the second step of the ARINO-process,” Catalysis Today, vol. 97, no. 4, pp. 277–282, 2004.
[116]  M. Mukherjee, J. Nehlsen, S. Sundaresan, G. D. Suciu, and J. Dixon, “Developments in alkylation,” Hydrocarbon Engineering, vol. 12, pp. 25–28, 2007.
[117]  P. Meriaudeau and C. Naccache, “Skeletal isomerization of n-butenes catalyzed by medium-pore zeolites and aluminophosphates,” Advances in Catalysis, vol. 44, pp. 505–543, 1999.
[118]  U. Olsbye, S. Svelle, M. Bjrgen et al., “Conversion of methanol to hydrocarbons: how zeolite cavity and pore size controls product selectivity,” Angewandte Chemie—International Edition, vol. 51, no. 24, pp. 5810–5831, 2012.
[119]  N. Q. Feng and G. F. Peng, “Applications of natural zeolite to construction and building materials in China,” Construction and Building Materials, vol. 19, no. 8, pp. 579–584, 2005.
[120]  R. Al-Dwairi and M. Gougazeh, “Mn+2 and Cd+2 removal from industrial wastewater using phillipsitic tuff from Jabal Uniza, Southern Jordan,” Jordan Journal of Civil Engineering, vol. 4, no. 1, p. 22, 2010.
[121]  Z. Mallek, I. Fendri, L. Khannous et al., “Effect of zeolite (clinoptilolite) as feed additive in Tunisian broilers on the total flora, meat texture and the production of omega 3 polyunsaturated fatty acid,” Lipids in Health and Disease, vol. 11, article 35, 2012.
[122]  U. Genfelder, C. Hansen, G. Furrer, and R. Schulin, “Removal of heavy metals from mine waters by natural zeolites,” Environmental Science and Technology, vol. 39, no. 12, pp. 4606–4613, 2005.
[123]  L. Y. Li, K. Tazaki, R. Lai et al., “Treatment of acid rock drainage by clinoptilolite—adsorptivity and structural stability for different pH environments,” Applied Clay Science, vol. 39, no. 1-2, pp. 1–9, 2008.
[124]  P. Princz, J. Olah, S. E. Smith, K. Hatfield, and M. E. Litrico, “Wastewater treatment using modified natural zeolites,” in Use of Humic Substances to Remediate Polluted Environments: From Theory to Practice, I. V. Perminova, K. Hatfield, and N. Hertkorn, Eds., p. 267, Springer, Dordrecht, The Netherlands, 2005.
[125]  D. Schulze-Makuch, R. S. Bowman, S. D. Pillai, and H. Guan, “Field evaluation of the effectiveness of surfactant modified zeolite and iron-oxide-coated sand for removing viruses and bacteria from ground water,” Ground Water Monitoring and Remediation, vol. 23, no. 4, pp. 68–74, 2003.
[126]  H. F. Leach, “Chapter 10. Application of molecular sieve zeolites to catalysis,” Annual Reports on the Progress of Chemistry A, vol. 68, pp. 195–219, 1971.
[127]  R. Gl?ser and J. Weitkamp, Springer Series in Chemical Physics, vol. 75, p. 159, 2004.
[128]  S. Kesraoui-Ouki, C. R. Cheeseman, and R. Perry, “Natural zeolite utilisation in pollution control: a review of applications to metals' effluents,” Journal of Chemical Technology and Biotechnology, vol. 59, no. 2, pp. 121–126, 1994.
[129]  A. Walcarius, “Electroanalytical applications of microporous zeolites and mesoporous (organo)silicas: recent trends,” Electroanalysis, vol. 20, no. 7, pp. 711–738, 2008.
[130]  X. Zhang, W. Li, H. Xu, and H. Liu, “Application of zeolites in photocatalysis,” Progress in Chemistry, vol. 16, no. 5, p. 728, 2004.
[131]  T. C. Bowen, R. D. Noble, and J. L. Falconer, “Fundamentals and applications of pervaporation through zeolite membranes,” Journal of Membrane Science, vol. 245, no. 1-2, pp. 1–33, 2004.
[132]  T. O. Drews and M. Tsapatsis, “Progress in manipulating zeolite morphology and related applications,” Current Opinion in Colloid & Interface Science, vol. 10, no. 5-6, pp. 233–238, 2005.
[133]  M. P. Pina, R. Mallada, M. Arruebo et al., “Zeolite films and membranes. Emerging applications,” Microporous and Mesoporous Materials, vol. 144, no. 1–3, pp. 19–27, 2011.
[134]  á. Berenguer-Murcia, E. Morallón, D. Cazorla-Amorós, and á. Linares-Solano, “Preparation of thin silicalite-1 layers on carbon materials by electrochemical methods,” Microporous and Mesoporous Materials, vol. 66, no. 2-3, pp. 331–340, 2003.
[135]  á. Berenguer-Murcia, E. Morallón, D. Cazorla-Amorós, and á. Linares-Solano, “Preparation of silicalite-1 layers on Pt-coated carbon materials: a possible electrochemical approach towards membrane reactors,” Microporous and Mesoporous Materials, vol. 78, no. 2-3, pp. 159–167, 2005.
[136]  J. Jiang, R. Babarao, and Z. Hu, “Molecular simulations for energy, environmental and pharmaceutical applications of nanoporous materials: from zeolites, metal-organic frameworks to protein crystals,” Chemical Society Reviews, vol. 40, no. 7, pp. 3599–3612, 2011.
[137]  M. E. Davis, C. Saldarriaga, C. Montes, J. Garces, and C. Crowder, “VPI-5: the first molecular sieve with pores larger than 10 ?ngstroms,” Zeolites, vol. 8, no. 5, pp. 362–366, 1988.
[138]  T. Yanagisawa, T. Shimizu, K. Kuroda, and C. Kato, “The preparation of alkyltriinethylaininonium-kaneinite complexes and their conversion to microporous materials,” Bulletin of the Chemical Society of Japan, vol. 63, no. 4, pp. 988–992, 1990.
[139]  C. F. Cheng, W. Zhou, D. H. Park, J. Klinowski, M. Hargreaves, and L. F. Gladden, “Controlling the channel diameter of the mesoporous molecular sieve MCM-41,” Journal of the Chemical Society, vol. 93, no. 2, pp. 359–363, 1997.
[140]  R. Ryoo and J. M. Kim, “Structural order in MCM-41 controlled by shifting silicate polymerization equilibrium,” Journal of the Chemical Society, Chemical Communications, vol. 7, pp. 711–712, 1995.
[141]  J. S. Beck, “Method for synthesizing mesoporous crystalline material,” US Patent no. 5057296, 1991.
[142]  U. Ciesla and F. Schüth, “Ordered mesoporous materials,” Microporous and Mesoporous Materials, vol. 27, no. 2-3, pp. 131–149, 1999.
[143]  M. Kruk and M. Jaroniec, “Gas adsorption characterization of ordered organic-inorganic nanocomposite materials,” Chemistry of Materials, vol. 13, no. 10, pp. 3169–3183, 2001.
[144]  F. Schüth, “Ordered mesoporous materials—state of the art and prospects,” Studies in Surface Science and Catalysis, vol. 135, pp. 1–12, 2001.
[145]  A. Sayari and S. Hamoudi, “Periodic mesoporous silica-based organic-inorganic nanocomposite materials,” Chemistry of Materials, vol. 13, no. 10, pp. 3151–3168, 2001.
[146]  A. Sayari, “Periodic mesoporous materials: synthesis, characterization and potential applications,” Studies in Surface Science and Catalysis, vol. 102, pp. 1–46, 1996.
[147]  A. Sayari and P. Liu, “Non-silica periodic mesostructured materials: recent progress,” Microporous Materials, vol. 12, no. 4–6, pp. 149–177, 1997.
[148]  A. Sayari, “Catalysis by crystalline mesoporous molecular sieves,” Chemistry of Materials, vol. 8, no. 8, pp. 1840–1852, 1996.
[149]  J. Y. Ying, C. P. Mehnert, and M. S. Wong, “Synthesis and applications of supramolecular-templated mesoporous materials,” Angewandte Chemie—International Edition, vol. 38, no. 1-2, pp. 56–77, 1999.
[150]  T. Maschmeyer, “Derivatised mesoporous solids,” Current Opinion in Solid State & Materials Science, vol. 3, pp. 71–78, 1998.
[151]  D. Brunel, “Functionalized micelle-templated silicas (MTS) and their use as catalysts for fine chemicals,” Microporous and Mesoporous Materials, vol. 27, no. 2-3, pp. 329–344, 1999.
[152]  K. Moller and T. Bein, “Inclusion chemistry in periodic mesoporous hosts,” Chemistry of Materials, vol. 10, no. 10, pp. 2950–2963, 1998.
[153]  A. Stein, B. J. Melde, and R. C. Schroden, “Hybrid inorganic-organic mesoporous silicates-nanoscopic reactors coming of age,” Advanced Materials, vol. 12, no. 19, pp. 1403–1419, 2000.
[154]  M. P. Pileni, “Reverse micelles as microreactors,” Journal of Physical Chemistry, vol. 97, no. 27, pp. 6961–6973, 1993.
[155]  V. Pillai, P. Kumar, M. J. Hou, P. Ayyub, and D. O. Shah, “Preparation of nanoparticles of silver halides, superconductors and magnetic materials using water-in-oil microemulsions as nano-reactors,” Advances in Colloid and Interface Science, vol. 55, pp. 241–269, 1995.
[156]  J. Patarin, B. Lebeau, and R. Zana, “Recent advances in the formation mechanisms of organized mesoporous materials,” Current Opinion in Colloid and Interface Science, vol. 7, no. 1-2, pp. 107–115, 2002.
[157]  A. Corma, V. Fornes, M. T. Navarro, and J. Pérez-Pariente, “Acidity and stability of MCM-41 crystalline aluminosilicates,” Journal of Catalysis, vol. 148, no. 2, pp. 569–574, 1994.
[158]  M. Janicke, D. Kumar, G. D. Stucky, and B. F. Chmelka, “Aluminum incorporation in mesoporous molecular sieves,” Studies in Surface Science and Catalysis, vol. 84, pp. 243–250, 1994.
[159]  K. M. Reddy and C. Song, “Synthesis of mesoporous molecular sieves: influence of aluminum source on Al incorporation in MCM-41,” Catalysis Letters, vol. 36, no. 1-2, pp. 103–109, 1996.
[160]  R. B. Borade and A. Clearfield, “Synthesis of aluminum rich MCM-41,” Catalysis Letters, vol. 31, no. 2-3, pp. 267–272, 1995.
[161]  R. Mokaya and W. Jones, “Physicochemical characterisation and catalytic activity of primary amine templated aluminosilicate mesoporous catalysts,” Journal of Catalysis, vol. 172, no. 1, pp. 211–221, 1997.
[162]  J. M. Kim and R. Ryoo, “Disintegration of mesoporous structures of MCM-41 and MCM-48 in water,” Bulletin of the Korean Chemical Society, vol. 17, no. 1, pp. 66–68, 1996.
[163]  C. Y. Chen, H.-X. Li, and M. E. Davis, “Studies on mesoporous materials: I. Synthesis and characterization of MCM-41,” Microporous Materials, vol. 2, no. 1, pp. 17–26, 1993.
[164]  R. Mokaya, “Al content dependent hydrothermal stability of directly synthesized aluminosilicate MCM-41,” Journal of Physical Chemistry B, vol. 104, no. 34, pp. 8279–8286, 2000.
[165]  K. J. Edler, P. A. Reynolds, J. W. White, and D. Cookson, “Diffuse wall structure and narrow mesopores in highly crystalline MCM-41 materials studied by X-ray diffraction,” Journal of the Chemical Society, vol. 93, no. 1, pp. 199–202, 1997.
[166]  S. Inagaki, S. Guan, T. Ohsuna, and O. Terasaki, “An ordered mesoporous organosilica hybrid material with a crystal-like wall structure,” Nature, vol. 416, no. 6878, pp. 304–307, 2002.
[167]  J. Rouquerol, D. Avnir, C. W. Fairbridge et al., “Recommendations for the characterization of porous solids,” Pure and Applied Chemistry, vol. 66, no. 8, pp. 1739–1758, 1994.
[168]  D. H. Everett, “Definitions, terminology, and symbols in colloid and surface chemistry,” Pure and Applied Chemistry, vol. 31, no. 4, pp. 579–638, 1972.
[169]  T. J. Mays, “A new classification of pore sizes,” Studies in Surface Science and Catalysis, vol. 160, pp. 57–62, 2007.
[170]  Bureau International des Poids et Mesures, The International System of Units (SI), 7th edition, 1998.
[171]  C. Y. Chen, S. L. Burkett, H. X. Li, and M. E. Davis, “Studies on mesoporous materials II. Synthesis mechanism of MCM-41,” Microporous Materials, vol. 2, no. 1, pp. 27–34, 1993.
[172]  A. Steel, S. W. Carr, and M. W. Anderson, “14N NMR study of surfactant mesophases in the synthesis of mesoporous silicates,” Journal of the Chemical Society, Chemical Communications, no. 13, pp. 1571–1572, 1994.
[173]  A. Monnier, F. Schuth, Q. Huo et al., “Cooperative formation of inorganic-organic interfaces in the synthesis of silicate mesostructures,” Science, vol. 261, no. 5126, pp. 1299–1303, 1993.
[174]  S. Inagaki, Y. Fukushima, and K. Kuroda, “Synthesis of highly ordered mesoporous materials from a layered polysilicate,” Journal of the Chemical Society, Chemical Communications, no. 8, pp. 680–682, 1993.
[175]  A. Firouzi, D. Kumar, L. M. Bull et al., “Cooperative organization of inorganic-surfactant and biomimetic assemblies,” Science, vol. 267, no. 5201, pp. 1138–1143, 1995.
[176]  O. Regev, “Nucleation events during the synthesis of mesoporous materials using liquid crystalline templating,” Langmuir, vol. 12, no. 20, pp. 4940–4944, 1996.
[177]  Q. Huo, D. I. Margolese, U. Ciesla et al., “Generalized synthesis of periodic surfactant/inorganic composite materials,” Nature, vol. 368, no. 6469, pp. 317–321, 1994.
[178]  F. Gao, J. Hu, C. Peng, H. Liu, and Y. Hu, “Synergic effects of imidazolium ionic liquids on P123 mixed micelles for inducing micro/mesoporous materials,” Langmuir, vol. 28, no. 5, pp. 2950–2959, 2012.
[179]  J. Zhang, Z. Luz, and D. Goldfarb, “EPR studies of the formation mechanism of the mesoporous materials MCM-41 and MCM-50,” Journal of Physical Chemistry B, vol. 101, no. 36, pp. 7087–7094, 1997.
[180]  A. Galarneau, F. D. Renzo, F. Fajula, L. Mollo, B. Fubini, and M. F. Ottaviani, “Kinetics of formation of micelle-templated silica mesophases monitored by electron paramagnetic resonance,” Journal of Colloid and Interface Science, vol. 201, no. 2, pp. 105–117, 1998.
[181]  J. Zhang, Z. Luz, H. Zimmermann, and D. Goldfarb, “The formation of the mesoporous material MCM-41 as studied by EPR line shape analysis of spin probes,” Journal of Physical Chemistry B, vol. 104, no. 2, pp. 279–285, 2000.
[182]  D. Zhao, J. Feng, Q. Huo et al., “Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores,” Science, vol. 279, no. 5350, pp. 548–552, 1998.
[183]  Q. Huo, D. I. Margolese, and G. D. Stucky, “Surfactant control of phases in the synthesis of mesoporous silica-based materials,” Chemistry of Materials, vol. 8, no. 5, pp. 1147–1160, 1996.
[184]  C. Z. Yu, Y. H. Yu, and D. Y. Zhao, “Highly ordered large caged cubic mesoporous silica structures templated by triblock PEO–PBO–PEO copolymer,” Chemical Communications, no. 7, pp. 575–576, 2000.
[185]  X. Y. Liu, B. Z. Tian, C. Z. Yu et al., “Room-temperature synthesis in acidic media of large-pore three-dimensional bicontinuous mesoporous silica with Ia3d symmetry,” Angewandte Chemie—International Edition, vol. 41, no. 20, pp. 3876–3878, 2002.
[186]  J. Fan, C. Yu, F. Gao et al., “Cubic mesoporous silica with large controllable entrance sizes and advanced adsorption properties,” Angewandte Chemie—International Edition, vol. 42, no. 27, pp. 3146–3150, 2003.
[187]  S. Che, Z. Liu, T. Ohsuna, K. Sakamoto, O. Terasaki, and T. Tatsumi, “Synthesis and characterization of chiral mesoporous silica,” Nature, vol. 429, no. 6989, pp. 281–284, 2004.
[188]  T. Yokoi, H. Yoshitake, and T. Tatsumi, “Synthesis of anionic-surfactant-templated mesoporous silica using organoalkoxysilane-containing amino groups,” Chemistry of Materials, vol. 15, no. 24, pp. 4536–4538, 2003.
[189]  S. A. Bagshaw, E. Prouzet, and T. J. Pinnavaia, “Templating of mesoporous molecular sieves by nonionic polyethylene oxide surfactants,” Science, vol. 269, no. 5228, pp. 1242–1244, 1995.
[190]  P. T. Tanev and T. J. Pinnavaia, “A neutral templating route to Mesoporous molecular sieves,” Science, vol. 267, no. 5199, pp. 865–867, 1995.
[191]  F. Kleitz, D. Liu, G. M. Anilkumar et al., “Large cage face-centered-cubic Fm3m mesoporous silica: synthesis and structure,” Journal of Physical Chemistry B, vol. 107, no. 51, pp. 14296–14300, 2003.
[192]  F. Kleitz, S. H. Choi, and R. Ryoo, “Cubic Ia3d large mesoporous silica: synthesis and replication to platinum nanowires, carbon nanorods and carbon nanotubes,” Chemical Communications, vol. 9, no. 17, pp. 2136–2137, 2003.
[193]  J. H. Sun, Z. Shan, T. Maschmeyer, and M. O. Coppens, “Synthesis of bimodal nanostructured silicas with independently controlled small and large mesopore sizes,” Langmuir, vol. 19, no. 20, pp. 8395–8402, 2003.
[194]  Y. Wan and D. Zhao, “On the controllable soft-templating approach to mesoporous silicates,” Chemical Reviews, vol. 107, no. 7, pp. 2821–2860, 2007.
[195]  P. Yang, D. Zhao, D. I. Margolese, B. F. Chmelka, and G. D. Stucky, “Generalized syntheses of large-pore mesoporous metal oxides with semicrystalline frameworks,” Nature, vol. 396, no. 6707, pp. 152–155, 1998.
[196]  Y. Lu, R. Ganguli, C. A. Drewien et al., “Continuous formation of supported cubic and hexagonal mesoporous films by sol-gel dip-coating,” Nature, vol. 389, no. 6649, pp. 364–368, 1997.
[197]  J. W. Kriesel, M. S. Sander, and T. D. Tilley, “General route to homogeneous, mesoporous, multicomponent oxides based on the thermolytic transformation of molecular precursors in non-polar media,” Advanced Materials, vol. 13, no. 5, pp. 331–335, 2001.
[198]  G. J. A. A. Soler-Illia, C. Sanchez, B. Lebeau, and J. Patarin, “Chemical strategies to design textured materials: from microporous and mesoporous oxides to nanonetworks and hierarchical structures,” Chemical Reviews, vol. 102, no. 11, pp. 4093–4138, 2002.
[199]  M. Xu, A. Arnold, A. Buchholz, W. Wang, and M. Hunger, “Low-temperature modification of mesoporous MCM-41 material with sublimated aluminum chloride in vacuum,” Journal of Physical Chemistry B, vol. 106, no. 47, pp. 12140–12143, 2002.
[200]  A. Okabe, M. Niki, T. Fukushima, and T. Aida, “Ethanol vapor-mediated maturing for the enhancement of structural regularity of hexagonal mesoporous silica films,” Chemical Communications, vol. 22, pp. 2572–2573, 2004.
[201]  R. Vogel, C. Dobe, A. Whittaker et al., “Postsynthesis stabilization of free-standing mesoporous silica films,” Langmuir, vol. 20, no. 7, pp. 2908–2914, 2004.
[202]  Y. D. Xia and R. Mokaya, “A study of the behaviour of mesoporous silicas in OH/CTABr/H2O systems: phase dependent stabilisation, dissolution or semi-pseudomorphic transformation,” Journal of Materials Chemistry, vol. 13, no. 12, pp. 3112–3121, 2003.
[203]  D. Khushalani, A. Kuperman, G. A. Ozin et al., “Metamorphic materials: restructuring siliceous mesoporous materials,” Advanced Materials, vol. 7, no. 10, pp. 842–846, 1995.
[204]  F. Schüth, “Non-siliceous mesostructured and mesoporous materials,” Chemistry of Materials, vol. 13, no. 10, pp. 3184–3195, 2001.
[205]  H. F. Yang and D. Y. Zhao, “Synthesis of replica mesostructures by the nanocasting strategy,” Journal of Materials Chemistry, vol. 15, pp. 1217–1231, 2005.
[206]  Y. Shi, Y. Wan, and D. Zhao, “Ordered mesoporous non-oxide materials,” Chemical Society Reviews, vol. 40, no. 7, pp. 3854–3878, 2011.
[207]  M. Tiemann, “Repeated templating,” Chemistry of Materials, vol. 20, no. 3, pp. 961–971, 2008.
[208]  D. M. Antonelli and J. Y. Ying, “Synthesis of hexagonally packed mesoporous TiO2 by a modified Sol—Gel method,” Angewandte Chemie—International Edition, vol. 34, no. 18, pp. 2014–2017, 1995.
[209]  C. Kn?fel, M. Lutecki, C. Martin, M. Mertens, V. Hornebecq, and P. L. Llewellyn, “Green solvent extraction of a triblock copolymer from mesoporous silica: application to the adsorption of carbon dioxide under static and dynamic conditions,” Microporous and Mesoporous Materials, vol. 128, no. 1–3, pp. 26–33, 2010.
[210]  D. M. Antonelli, A. Nakahira, and J. Y. Ying, “Ligand-assisted liquid crystal templating in mesoporous niobium oxide molecular sieves,” Inorganic Chemistry, vol. 35, no. 11, pp. 3126–3136, 1996.
[211]  M. S. Wong, D. M. Antonelli, and J. Y. Ying, “Synthesis and characterization of phosphated mesoporous zirconium oxide,” Nanostructured Materials, vol. 9, no. 1–8, pp. 165–168, 1997.
[212]  P. Liu, I. L. Moudrakovski, J. Liu, and A. Sayari, “Mesostructured vanadium oxide containing dodecylamine,” Chemistry of Materials, vol. 9, no. 11, pp. 2513–2520, 1997.
[213]  D. M. Antonelli, “Synthesis and mechanistic studies of sulfated meso- and microporous zirconias with chelating carboxylate surfactants,” Advanced Materials, vol. 11, no. 6, pp. 487–492, 1999.
[214]  D. M. Antonelli, “Synthesis of macro-mesoporous niobium oxide molecular sieves by a ligand-assisted vesicle templating strategy,” Microporous and Mesoporous Materials, vol. 33, no. 1–3, pp. 209–214, 1999.
[215]  C. J. Brinker, Y. Lu, A. Sellinger, and H. Fan, “Evaporation-induced self-assembly: nanostructures made easy,” Advanced Materials, vol. 11, no. 7, pp. 579–585, 1999.
[216]  P. Yang, D. Zhao, D. I. Margolese, B. F. Chmelka, and G. D. Stucky, “Block copolymer templating syntheses of mesoporous metal oxides with large ordering lengths and semicrystalline framework,” Chemistry of Materials, vol. 11, no. 10, pp. 2813–2826, 1999.
[217]  B. Smarsly and M. Antonietti, “Block copolymer assemblies as templates for the generation of mesoporous inorganic materials and crystalline films,” European Journal of Inorganic Chemistry, no. 6, pp. 1111–1119, 2006.
[218]  C. Sanchez, L. Rozes, F. Ribot et al., “‘Chimie douce’: a land of opportunities for the designed construction of functional inorganic and hybrid organic-inorganic nanomaterials,” Comptes Rendus Chimie, vol. 13, no. 1-2, pp. 3–39, 2010.
[219]  D. Grosso, C. Boissière, B. Smarsly et al., “Periodically ordered nanoscale islands and mesoporous films composed of nanocrystalline multimetallic oxides,” Nature Materials, vol. 3, no. 11, pp. 787–792, 2004.
[220]  Y. Ren, Z. Ma, and P. G. Bruce, “Ordered mesoporous metal oxides: synthesis and applications,” Chemical Society Reviews, vol. 41, pp. 4909–4927, 2012.
[221]  M. Groenewolt, M. Antonietti, and S. Polarz, “Mixed micellar phases of nonmiscible surfactants: mesoporous silica with bimodal pore size distribution via the nanocasting process,” Langmuir, vol. 20, no. 18, pp. 7811–7819, 2004.
[222]  S. A. El-Safty, A. Shahat, and M. Ismael, “Mesoporous aluminosilica monoliths for the adsorptive removal of small organic pollutants,” Journal of Hazardous Materials, vol. 201-202, pp. 23–32, 2012.
[223]  Z. Wang and A. Stein, “Morphology control of carbon, silica, and carbon/silica nanocomposites: from 3D ordered macro-/mesoporous monoliths to shaped mesoporous particles,” Chemistry of Materials, vol. 20, no. 3, pp. 1029–1040, 2008.
[224]  Y. K. Hwang, K. C. Lee, and Y. U. Kwon, “Nanoparticle routes to mesoporous titania thin films,” Chemical Communications, pp. 1738–1739, 2001.
[225]  A. H. Lu and F. Schüth, “Nanocasting: a versatile strategy for creating nanostructured porous materials,” Advanced Materials, vol. 18, no. 14, pp. 1793–1805, 2006.
[226]  A. Pacu?a and R. Mokaya, “Synthesis and high hydrogen storage capacity of zeolite-like carbons nanocast using as-synthesized zeolite templates,” The Journal of Physical Chemistry C, vol. 112, no. 7, pp. 2764–2769, 2008.
[227]  F. Schüth, “Endo- and exotemplating to create high-surface-area inorganic materials,” Angewandte Chemie—International Edition, vol. 42, no. 31, pp. 3604–3622, 2003.
[228]  W. O. Rosa, M. Jaafar, A. Asenjo, and M. Vázquez, “Nanostructured Co film on ordered polymer nanohills: a base for novel magnetic nanostructures,” Nanotechnology, vol. 20, Article ID 075301, 2009.
[229]  K. Wang, P. Birjukovs, D. Erts et al., “Synthesis and characterisation of ordered arrays of mesoporous carbon nanofibres,” Journal of Materials Chemistry, vol. 19, no. 9, pp. 1331–1338, 2009.
[230]  W. C. Yoo and J. K. Lee, “Field-dependent growth patterns of metals electroplated in nanoporous alumina membranes,” Advanced Materials, vol. 16, pp. 1097–1101, 2004.
[231]  C. M. Zelenski and P. K. Dorhout, “Template synthesis of near-monodisperse microscale nanofibers and nanotubules of MoS2,” Journal of the American Chemical Society, vol. 120, no. 4, pp. 734–742, 1998.
[232]  D. N. Davydov, P. A. Sattari, D. AlMawlawi, A. Osika, T. L. Haslett, and M. Moskovits, “Field emitters based on porous aluminum oxide templates,” Journal of Applied Physics, vol. 86, no. 7, pp. 3983–3987, 1999.
[233]  J. Lee, J. Kim, and T. Hyeon, “Recent progress in the synthesis of porous carbon materials,” Advanced Materials, vol. 18, no. 16, pp. 2073–2094, 2006.
[234]  A. Berenguer-Murcia, E. V. Rebrov, M. Cabaj et al., “Confined palladium colloids in mesoporous frameworks for carbon nanotube growth,” Journal of Materials Science, vol. 44, no. 24, pp. 6563–6570, 2009.
[235]  P. Banerjee, I. Perez, L. Henn-Lecordier, S. B. Lee, and G. W. Rubloff, “Nanotubular metal-insulator-metal capacitor arrays for energy storage,” Nature Nanotechnology, vol. 4, no. 5, pp. 292–296, 2009.
[236]  R. Ryoo, S. H. Joo, and S. Jun, “Synthesis of highly ordered carbon molecular sieves via template-mediated structural transformation,” The Journal of Physical Chemistry B, vol. 103, no. 37, pp. 7743–7746, 1999.
[237]  M. Kruk, M. Jaroniec, R. Ryoo, and S. H. Joo, “Characterization of ordered mesoporous carbons synthesized using MCM-48 silicas as templates,” Journal of Physical Chemistry B, vol. 104, no. 33, pp. 7960–7968, 2000.
[238]  H. J. Shin, R. Ryoo, M. Kruk, and M. Jaroniec, “Modification of SBA-15 pore connectivity by high-temperature calcination investigated by carbon inverse replication,” Chemical Communications, no. 4, pp. 349–350, 2001.
[239]  S. Che, K. Lund, T. Tatsumi et al., “Direct observation of 3D mesoporous structure by scanning electron microscopy (SEM): SBA-15 silica and CMK-5 carbon,” Angewandte Chemie—International Edition, vol. 42, no. 19, pp. 2182–2185, 2003.
[240]  H. J. Shin, R. Ryoo, Z. Liu, and O. Terasaki, “Template synthesis of asymmetrically mesostructured platinum networks,” Journal of the American Chemical Society, vol. 123, no. 6, pp. 1246–1247, 2001.
[241]  M. Gr?tzel, “Insight,” Nature, vol. 414, pp. 338–344, 2001.
[242]  S. Jun, S. H. Joo, R. Ryoo et al., “Synthesis of new, nanoporous carbon with hexagonally ordered mesostructure,” Journal of the American Chemical Society, vol. 122, no. 43, pp. 10712–10713, 2000.
[243]  K. K. Zhu, B. Yue, W. Z. Zhou, and H. Y. He, “Preparation of three-dimensional chromium oxide porous single crystals templated by SBA-15,” Chemical Communications, pp. 98–99, 2003.
[244]  B. Yue, H. Tang, Z. Kong et al., “Preparation and characterization of three-dimensional mesoporous crystals of tungsten oxide,” Chemical Physics Letters, vol. 407, no. 1–3, pp. 83–86, 2005.
[245]  F. Jiao, B. Yue, K. K. Zhu, D. Y. Zhao, and H. Y. He, “α-Fe2O3 nanowires. Confined synthesis and catalytic hydroxylation of phenol,” Chemistry Letters, vol. 32, no. 8, pp. 770–771, 2003.
[246]  B. F. G. Johnson, “Nanoparticles in catalysis,” Topics in Catalysis, vol. 24, no. 1–4, pp. 147–159, 2003.
[247]  B. Tian, X. Liu, L. A. Solovyov et al., “Facile synthesis and characterization of novel mesoporous and mesorelief oxides with gyroidal structures,” Journal of the American Chemical Society, vol. 126, no. 3, pp. 865–875, 2004.
[248]  Y. G. Wang, Y. Q. Wang, X. H. Liu et al., “Nanocasted synthesis of mesoporous metal oxides and mixed oxides from mesoporous cubic (Ia3d) vinylsilica,” Journal of Nanoscience and Nanotechnology, vol. 8, no. 11, pp. 5652–5658, 2008.
[249]  M. Tiemann, “Porous metal oxides as gas sensors,” Chemistry, vol. 13, pp. 8376–8388, 2007.
[250]  K. Jiao, B. Zhang, B. Yue et al., “Growth of porous single-crystal Cr2O3 in a 3-D mesopore system,” Chemical Communications, no. 45, pp. 5618–5620, 2005.
[251]  F. Jiao, K. M. Shaju, and P. G. Bruce, “Synthesis of nanowire and mesoporous low-temperature LiCoO2 by a post-templating reaction,” Angewandte Chemie—International Edition, vol. 44, no. 40, pp. 6550–6553, 2005.
[252]  W. B. Yue and W. Z. Zhou, “Synthesis of porous single crystals of metal oxides via a solid-liquid route,” Chemistry of Materials, vol. 19, no. 9, pp. 2359–2363, 2007.
[253]  S. C. Laha and R. Ryoo, “Synthesis of thermally stable mesoporous cerium oxide with nanocrystalline frameworks using mesoporous silica templates,” Chemical Communications, vol. 9, no. 17, pp. 2138–2139, 2003.
[254]  R. L. Bao, K. Jiao, H. Y. He, J. H. Zhuang, and B. Yue, “Fabrication of metal oxide nanowires templated by SBA-15 with adsorption-precipitation method,” Studies in Surface Science and Catalysis, vol. 165, pp. 267–270, 2006.
[255]  J. N. Kondo and K. Domen, “Crystallization of mesoporous metal oxides,” Chemistry of Materials, vol. 20, no. 3, pp. 835–847, 2008.
[256]  Y. Ren, P. G. Bruce, and Z. Ma, “Solid-solid conversion of ordered crystalline mesoporous metal oxides under reducing atmosphere,” Journal of Materials Chemistry, vol. 21, pp. 9312–9318, 2011.
[257]  F. Jiao, J. C. Jumas, M. Womes, A. V. Chadwick, A. Harrison, and P. G. Bruce, “Synthesis of ordered mesoporous Fe3O4 and γ-Fe2O3 with crystalline walls using post-template reduction/oxidation,” Journal of the American Chemical Society, vol. 128, no. 39, pp. 12905–12909, 2006.
[258]  F. Jiao, J. L. Bao, A. H. Hill, and P. G. Bruce, “Synthesis of ordered mesoporous Li–Mn–O spinel as a positive electrode for rechargeable lithium batteries,” Angewandte Chemie—International Edition, vol. 47, no. 50, pp. 9711–9716, 2008.
[259]  M. Choi, K. Na, J. Kim, Y. Sakamoto, O. Terasaki, and R. Ryoo, “Stable single-unit-cell nanosheets of zeolite MFI as active and long-lived catalysts,” Nature, vol. 461, no. 7261, pp. 246–249, 2009.
[260]  A. Corma, P. Atienzar, H. García, and J. Y. Chane-Ching, “Hierarchically mesostructured doped CeO2 with potential for solar-cell use,” Nature Materials, vol. 3, no. 6, pp. 394–397, 2004.
[261]  J. Y. Chane-Ching, F. Cobo, D. Aubert, H. G. Harvey, M. Airiau, and A. Corma, “A general method for the synthesis of nanostructured large-surface-area materials through the self-assembly of functionalized nanoparticles,” Chemistry, vol. 11, no. 3, pp. 979–987, 2005.
[262]  D. Verboekend and J. Pérez-Ramírez, “Design of hierarchical zeolite catalysts by desilication,” Catalysis Science & Technology, vol. 1, pp. 879–890, 2011.
[263]  Y. Liu, W. Zhang, and T. J. Pinnavaia, “Steam-stable aluminosilicate mesostructures assembled from zeolite type Y seeds,” Journal of the American Chemical Society, vol. 122, no. 36, pp. 8791–8792, 2000.
[264]  Y. Liu, W. Zhang, and T. J. Pinnavaia, “Steam-stable MSU-S aluminosilicate mesostructures assembled from Zeolite ZSM-5 and zeolite beta seeds,” Angewandte Chemie—International Edition, vol. 40, no. 7, pp. 1255–1258, 2001.
[265]  J. Górka, A. Zawislak, J. Choma, and M. Jaroniec, “KOH activation of mesoporous carbons obtained by soft-templating,” Carbon, vol. 46, no. 8, pp. 1159–1161, 2008.
[266]  J. L. G. Fierro, Metal Oxides: Chemistry and Applications, Taylor&Francis, Boca Raton, Fla, USA, 2006.
[267]  A. Goetzberger, C. Hebling, and H. W. Schock, “Photovoltaic materials, history, status and outlook,” Materials Science and Engineering R, vol. 40, no. 1, 2003.
[268]  A. J. Frank, N. Kopidakis, and J. van de Lagemaat, “Electrons in nanostructured TiO2 solar cells: transport, recombination and photovoltaic properties,” Coordination Chemistry Reviews, vol. 248, no. 13-14, pp. 1165–1179, 2004.
[269]  B. Oregan and M. Gr?tzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films,” Nature, vol. 353, pp. 737–740, 1991.
[270]  I. L. Violi, M. D. Perez, M. C. Fuertes, and G. J. A. A. Soler-Illia, “Highly ordered, accessible and nanocrystalline mesoporous TiO2 thin films on transparent conductive substrates,” ACS Applied Materials & Interfaces, vol. 4, no. 8, pp. 4320–4330, 2012.
[271]  M. Zukalová, A. Zukal, L. Kavan, M. K. Nazeeruddin, P. Liska, and M. Gr?tzel, “Organized mesoporous TiO2 films exhibiting greatly enhanced performance in dye-sensitized solar cells,” Nano Letters, vol. 5, no. 9, pp. 1789–1792, 2005.
[272]  E. J. W. Crossland, M. Kamperman, M. Nedelcu et al., “A bicontinuous double gyroid hybrid solar cell,” Nano Letters, vol. 9, no. 8, pp. 2807–2812, 2009.
[273]  E. J. W. Crossland, M. Nedelcu, C. Ducati et al., “Block copolymer morphologies in dye-sensitized solar cells: probing the photovoltaic structure-function relation,” Nano Letters, vol. 9, no. 8, pp. 2813–2819, 2009.
[274]  M. Nedelcu, J. Lee, E. J. W. Crossland et al., “Block copolymer directed synthesis of mesoporous TiO2 for dye-sensitized solar cells,” Soft Matter, vol. 5, no. 1, pp. 134–139, 2009.
[275]  P. Docampo, S. Guldin, M. Stefik et al., “Control of solid-state dye-sensitized solar cell performance by block-copolymer-directed TiO2 synthesis,” Advanced Functional Materials, vol. 20, no. 11, pp. 1787–1796, 2010.
[276]  E. Ramasamy and J. Lee, “Ordered mesoporous SnO2-based photoanodes for high-performance dye-sensitized solar cells,” Journal of Physical Chemistry C, vol. 114, no. 50, pp. 22032–22037, 2010.
[277]  J. Y. Luo, J. J. Zhang, and Y. Y. Xia, “Highly electrochemical reaction of lithium in the ordered mesoporosus β-MnO2,” Chemistry of Materials, vol. 18, no. 23, pp. 5618–5623, 2006.
[278]  F. Jiao and P. G. Bruce, “Mesoporous crystalline β-MnO2—a reversible positive electrode for rechargeable lithium batteries,” Advanced Materials, vol. 19, no. 5, p. 657, 2007.
[279]  G. Wang, H. Liu, J. Horvat et al., “Highly ordered mesoporous cobalt oxide nanostructures: synthesis, characterisation, magnetic properties, and applications for electrochemical energy devices,” Chemistry, vol. 16, no. 36, pp. 11020–11027, 2010.
[280]  F. Jiao, J. Bao, and P. G. Bruce, “Factors influencing the rate of Fe2O3 conversion reaction,” Electrochemical and Solid-State Letters, vol. 10, no. 12, pp. A264–A266, 2007.
[281]  Y. Shi, B. Guo, S. A. Corr et al., “Ordered mesoporous metallic MoO2 materials with highly reversible lithium storage capacity,” Nano Letters, vol. 9, no. 12, pp. 4215–4220, 2009.
[282]  H. Liu, G. Wang, J. Liu, S. Qiao, and H. Ahn, “Highly ordered mesoporous NiO anode material for lithium ion batteries with an excellent electrochemical performance,” Journal of Materials Chemistry, vol. 21, no. 9, pp. 3046–3052, 2011.
[283]  J. K. Shon, H. Kim, S. S. Kong et al., “Nano-propping effect of residual silicas on reversible lithium storage over highly ordered mesoporous SnO2 materials,” Journal of Materials Chemistry, vol. 19, no. 37, pp. 6727–6732, 2009.
[284]  W. B. Yue, C. Randorn, P. S. Attidekou, Z. X. Su, J. T. S. Irvine, and W. Z. Zhou, “Syntheses, Li insertion, and photoactivity of mesoporous crystalline TiO2,” Advanced Functional Materials, vol. 19, no. 17, pp. 2826–2833, 2009.
[285]  M. J. Bleda-Martínez, D. Lozano-Castelló, D. Cazorla-Amorós, and E. Morallón, “Kinetics of double-layer formation: influence of porous structure and pore size distribution,” Energy & Fuels, vol. 24, no. 6, pp. 3378–3384, 2010.
[286]  D. Lozano-Castelló, D. Cazorla-Amorós, A. Linares-Solano, S. Shiraishi, H. Kurihara, and A. Oya, “Influence of pore structure and surface chemistry on electric double layer capacitance in non-aqueous electrolyte,” Carbon, vol. 41, no. 9, pp. 1765–1775, 2003.
[287]  M. J. Bleda-Martínez, J. A. Maciá-Agulló, D. Lozano-Castelló, E. Morallón, D. Cazorla-Amorós, and á. Linares-Solano, “Role of surface chemistry on electric double layer capacitance of carbon materials,” Carbon, vol. 43, no. 13, pp. 2677–2684, 2005.
[288]  H. Nishihara and T. Kyotani, “Templated nanocarbons for energy storage,” Advanced Materials, vol. 24, no. 33, pp. 4473–4498, 2012.
[289]  H. Nishihara, H. Itoi, T. Kogure et al., “Investigation of the ion storage/transfer behavior in an electrical double- layer capacitor by using ordered microporous carbons as model materials,” Chemistry, vol. 15, no. 21, pp. 5355–5363, 2009.
[290]  G. S. Attard, P. N. Bartlett, N. R. B. Coleman, J. M. Elliott, J. R. Owen, and J. H. Wang, “Mesoporous platinum films from lyotropic liquid crystalline phases,” Science, vol. 278, no. 5339, pp. 838–840, 1997.
[291]  M. Vettraino, M. Trudeau, and D. M. Antonelli, “Synthesis and characterization of a new family of electroactive alkali metal doped mesoporous Nb, Ta, and Ti oxides and evidence for an Anderson transition in reduced mesoporous titanium oxide,” Inorganic Chemistry, vol. 40, no. 9, pp. 2088–2095, 2001.
[292]  J. Y. Luo and Y. Y. Xia, “Effect of pore structure on the electrochemical capacitive performance of MnO2,” Journal of the Electrochemical Society, vol. 154, no. 11, pp. A987–A992, 2007.
[293]  W. Wu, Y. G. Wang, F. Li, and Y. Y. Xia, “Electrochemical capacitance performance of ordered mesoporous Co3O4 synthesized by template method,” Acta Chimica Sinica, vol. 67, no. 3, pp. 208–212, 2009.
[294]  S. Domínguez-Domínguez, á. Berenguer Murcia, á. Linares-Solano, and D. Cazorla-Amorós, “Inorganic materials as supports for palladium nanoparticles: application in the semi-hydrogenation of phenylacetylene,” Journal of Catalysis, vol. 257, no. 1, pp. 87–95, 2008.
[295]  E. V. Rebrov, á. Berenguer-Murcia, H. E. Skelton, B. F. G. Johnson, A. E. H. Wheatley, and J. C. Schouten, “Capillary microreactors wall-coated with mesoporous titania thin film catalyst supports,” Lab on a Chip, vol. 9, no. 4, pp. 503–506, 2009.
[296]  W. Shen, X. Dong, Y. Zhu, H. Chen, and J. Shi, “Mesoporous CeO2 and CuO-loaded mesoporous CeO2: synthesis, characterization, and CO catalytic oxidation property,” Microporous and Mesoporous Materials, vol. 85, no. 1-2, pp. 157–162, 2005.
[297]  Q. Yuan, Q. Liu, W. G. Song et al., “Ordered mesoporous Ce1-xZrxO2 solid solutions with crystalline walls,” Journal of the American Chemical Society, vol. 129, no. 21, pp. 6698–6699, 2007.
[298]  J. Roggenbuck, H. Sch?fer, T. Tsoncheva, C. Minchev, J. Hanss, and M. Tiemann, “Mesoporous CeO2: synthesis by nanocasting, characterisation and catalytic properties,” Microporous and Mesoporous Materials, vol. 101, no. 3, pp. 335–341, 2007.
[299]  M. Vettraino, X. He, M. Trudeau, J. E. Drake, and D. M. Antonelli, “Synthesis of a stable metallic niobium oxide molecular sieve and subsequent room temperature activation of dinitrogen,” Advanced Functional Materials, vol. 12, no. 3, pp. 174–178, 2002.
[300]  G. S. Armatas, A. P. Katsoulidis, D. E. Petrakis, P. J. Pomonis, and M. G. Kanatzidis, “Nanocasting of ordered mesoporous Co3O4-based polyoxometalate composite frameworks,” Chemistry of Materials, vol. 22, no. 20, pp. 5739–5746, 2010.
[301]  G. S. Armatas, A. P. Katsoulidis, D. E. Petrakis, and P. J. Pomonis, “Synthesis and acidic catalytic properties of ordered mesoporous alumina-tungstophosphoric acid composites,” Journal of Materials Chemistry, vol. 20, no. 39, pp. 8631–8638, 2010.
[302]  S. Chu, L. Luo, J. Yang et al., “Low-temperature synthesis of mesoporous TiO2 photocatalyst with self-cleaning strategy to remove organic templates,” Applied Surface Science, vol. 258, no. 24, pp. 9664–9667, 2012.
[303]  B. D. Alexander, P. J. Kulesza, I. Rutkowska, R. Solarska, and J. Augustynski, “Metal oxide photoanodes for solar hydrogen production,” Journal of Materials Chemistry, vol. 18, no. 20, pp. 2298–2303, 2008.
[304]  O. K. Varghese and C. A. Grimes, “Metal oxide nanoarchitectures for environmental sensing,” Journal of Nanoscience and Nanotechnology, vol. 3, no. 4, pp. 277–293, 2003.
[305]  T. Hyodo, N. Nishida, Y. Shimizu, and M. Egashira, “Preparation and gas-sensing properties of thermally stable mesoporous SnO2,” Sensors and Actuators B, vol. 83, no. 1–3, pp. 209–215, 2002.
[306]  T. Hyodo, S. Abe, Y. Shimizu, and M. Egashira, “Gas-sensing properties of ordered mesoporous SnO2 and effects of coatings thereof,” Sensors and Actuators B, vol. 93, no. 1–3, pp. 590–600, 2003.
[307]  E. Rossinyol, J. Arbiol, F. Peiró et al., “Nanostructured metal oxides synthesized by hard template method for gas sensing applications,” Sensors and Actuators B, vol. 109, no. 1, pp. 57–63, 2005.
[308]  E. Rossinyol, A. Prim, E. Pellicer et al., “synthesis and characterization of chromium-doped mesoporous tungsten oxide for gas sensing applications,” Advanced Functional Materials, vol. 17, pp. 1801–1806, 2007.
[309]  T. Wagner, T. Waitz, J. Roggenbuck, M. Fr?ba, C. D. Kohl, and M. Tiemann, “Ordered mesoporous ZnO for gas sensing,” Thin Solid Films, vol. 515, no. 23, pp. 8360–8363, 2007.
[310]  A. Prim, E. Pellicer, E. Rossinyol, F. Peiró, A. Cornet, and J. R. Morante, “A novel mesoporous CaO-loaded in2O3 material for CO2 sensing,” Advanced Functional Materials, vol. 17, no. 15, pp. 2957–2963, 2007.
[311]  Science, vol. 334, p. 1635, 2012.
[312]  J. ?ejka and S. Mintova, “Perspectives of micro/mesoporous composites in catalysis,” Catalysis Reviews, vol. 49, p. 457, 2007.
[313]  C. E. A. Kirschhock, S. P. B. Kremer, J. Vermant, G. Van Tendeloo, P. A. Jacobs, and J. A. Martens, “Design and synthesis of hierarchical materials from ordered zeolitic building units,” Chemistry, vol. 11, no. 15, pp. 4306–4313, 2005.
[314]  L. Tosheva and V. P. Valtchev, “Nanozeolites: synthesis, crystallization mechanism, and applications,” Chemistry of Materials, vol. 17, no. 10, pp. 2494–2513, 2005.
[315]  K. Egeblad, C. H. Christensen, M. Kustova, and C. H. Christensen, “Templating mesoporous zeolites,” Chemistry of Materials, vol. 20, no. 3, pp. 946–960, 2008.
[316]  J. Jiang, J. L. Jorda, J. Yu et al., “Synthesis and structure determination of the hierarchical meso-microporous zeolite ITQ-43,” Science, vol. 333, no. 6046, pp. 1131–1134, 2011.
[317]  K. Na, C. Jo, J. Kim et al., “directing zeolite structures into hierarchically nanoporous architectures,” Science, vol. 333, pp. 328–332, 2011.
[318]  J. Jiang, J. Yu, and A. Corma, “Extra-large-pore zeolites: bridging the gap between micro and mesoporous structures,” Angewandte Chemie—International Edition, vol. 49, no. 18, p. 3120, 2010.
[319]  S. Van Donk, A. H. Janssen, J. H. Bitter, and K. P. De Jong, “Generation, characterization, and impact of mesopores in zeolite catalysts,” Catalysis Reviews, vol. 45, no. 2, pp. 297–319, 2003.
[320]  J. C. Groen, L. A. A. Peffer, J. A. Moulijn, and J. Pérez-Ramírez, “Desilication: on the controlled generation of mesoporosity in MFI zeolites,” Journal of Materials Chemistry, vol. 16, pp. 2121–2131, 2006.
[321]  A. Corma, V. Fornes, S. B. Pergher, T. L. M. Maesen, and J. G. Buglass, “Delaminated zeolite precursors as selective acidic catalysts,” Nature, vol. 396, no. 6709, pp. 353–356, 1998.
[322]  W. J. Roth and J. ?ejka, “Two-dimensional zeolites: dream or reality?” Catalysis Science & Technology, vol. 1, pp. 43–53, 2011.
[323]  S. Abelló and J. Pérez-Ramírez, “Accelerated generation of intracrystalline mesoporosity in zeolites by microwave-mediated desilication,” Physical Chemistry Chemical Physics, vol. 11, pp. 2959–2963, 2009.
[324]  C. C. Pavel, R. Palkovits, F. Schüth, and W. Schmidt, “The benefit of mesopores in ETS-10 on the vapor-phase Beckmann rearrangement of cyclohexanone oxime,” Journal of Catalysis, vol. 254, no. 1, pp. 84–90, 2008.
[325]  D. A. Young, US Patent no. 3326797, 1967.
[326]  J. Pérez-Ramírez, C. H. Christensen, K. Egeblad, C. H. Christensen, and J. C. Groen, “Hierarchical zeolites: enhanced utilisation of microporous crystals in catalysis by advances in materials design,” Chemical Society Reviews, vol. 37, pp. 2530–2542, 2008.
[327]  M. S. Holm, E. Taarning, K. Egeblad, and C. H. Christensen, “Catalysis with hierarchical zeolites,” Catalysis Today, vol. 168, no. 1, pp. 3–16, 2011.
[328]  Z. L. Hua, J. Zhou, and J. L. Shi, “Recent advances in hierarchically structured zeolites: synthesis and material performances,” Chemical Communications, vol. 47, pp. 10536–10547, 2011.
[329]  J. C. Groen, J. A. Moulijn, and J. Pérez-Ramérez, “Alkaline posttreatment of MFI zeolites. From accelerated screening to scale-up,” Industrial & Engineering Chemistry Research, vol. 46, no. 12, pp. 4193–4201, 2007.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133