全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
ISRN Nursing  2012 

Predictors' Factors of Nutritional Status of Male Chronic Obstructive Pulmonary Disease Patients

DOI: 10.5402/2012/782626

Full-Text   Cite this paper   Add to My Lib

Abstract:

Chronic obstructive pulmonary disease (COPD) is a systemic disease that leads to weight loss and muscle dysfunction resulting in an increase in mortality. This study aimed to determine the prevalence rate of malnutrition and nutritional status and also factors associated with nutritional status. A total of 149 subjects were involved in the cross-sectional study. The study was conducted at two medical centers in Kuala Lumpur, Malaysia. The results of the study showed that malnutrition was more prevalent (52.4%) in the subjects with severe stages of COPD as compared to mild and moderate COPD stages (26.2%) ( ). Fat-free mass depletion as assessed using fat-free mass index (FFMI) affected 41.9% of the subjects. Plasma vitamin A, peak expiratory flow (PEF), and handgrip were the predictors for body mass index (BMI) ( , ). Plasma vitamin A and force expiratory volume in one second (FEV1) were the predictors of FFMI ( , ). BMI was the predictor of respiratory factors, that is, FEV1% predicted ( , ). It can be concluded that there is a need to identify malnourished COPD patients for an appropriate nutrition intervention. 1. Introduction Chronic obstructive pulmonary disease (COPD) is a treatable and preventable disease. It is characterized by an airflow limitation which is not fully reversible [1]. COPD affects the lungs and produces significant systemic consequences such as weight loss and muscle dysfunction [2]. Weight loss and depletion of fat-free mass (FFM) may be observed in stable COPD patients, irrespective of the degree of airflow limitation. Weight loss and underweight are associated with an increased mortality risk. Weight loss and particularly muscle wasting contributes significantly to morbidity, disability, and handicap in COPD patients [1]. Skeletal muscle wasting is commonly present in patients with COPD and may also be present in patients with a stable weight [1]. Weight loss and loss of fat mass are primarily the result of a negative balance between dietary intake and energy expenditure, while muscle wasting is a consequence of an impaired balance between protein synthesis and protein breakdown. In advanced stages of COPD both energy balance and protein balance are disturbed. Therefore, nutritional therapy may only be effective if combined with exercise or other anabolic stimuli. Nutritional intervention should focus more on prevention and early treatment of weight loss to preserve energy balance [1]. Weight loss and being underweight are associated with decreased diffusing capacity and are observed more frequently in emphysematous patients

References

[1]  American Thoracic Society, “Standard for the diagnosis and management of patients with COPD,” New York, NY, USA, American Thoracic Society, 2004.
[2]  W. MacNee, “Treatment of stable COPD: antioxidants,” European Respiratory Review, vol. 14, no. 94, pp. 12–22, 2005.
[3]  M. P. K. J. Engelen, A. M. W. J. Schols, W. C. Baken, G. J. Wesseling, and E. F. M. Wouters, “Nutritional depletion in relation to respiratory and peripheral skeletal muscle function in out-patients with COPD,” European Respiratory Journal, vol. 7, no. 10, pp. 1793–1797, 1994.
[4]  M. P. K. J. Engelen, A. M. W. J. Schols, R. J. S. Lamers, and E. F. M. Wouters, “Different patterns of chronic tissue wasting among patients with chronic obstructive pulmonary disease,” Clinical Nutrition, vol. 18, no. 5, pp. 275–280, 1999.
[5]  E. P. A. Rutten, F. M. E. Franssen, M. P. K. J. Engelen, E. F. M. Wouters, N. E. P. Deutz, and A. M. W. J. Schols, “Greater whole-body myofibrillar protein breakdown in cachectic patients with chronic obstructive pulmonary disease,” American Journal of Clinical Nutrition, vol. 83, no. 4, pp. 829–834, 2006.
[6]  E. M. Baarends, A. M. W. J. Schols, D. L. E. Pannemans, K. R. Westerterp, and E. F. M. Wouters, “Total free living energy expenditure in patients with severe chronic obstructive pulmonary disease,” American Journal of Respiratory and Critical Care Medicine, vol. 155, no. 2, pp. 549–554, 1997.
[7]  R. Debigaré, F. Maltais, and C. H. C?té, “Peripheral muscle wasting in chronic obstructive pulmonary disease: clinical relevance and mechanisms,” American Journal of Respiratory and Critical Care Medicine, vol. 164, no. 9, pp. 1712–1717, 2001.
[8]  S. A. R. Paiva, A. O. Campana, and I. Godoy, “Nutrition support for the patient with chronic obstructive pulmonary disease,” Nutrition in Clinical Care, vol. 3, no. 1, pp. 44–50, 2000.
[9]  B. H. Hazlin, Penilaian status pemakanan dan status fungsi di kalangan pesakit luar penyakit pulmonary obstruktif kronik (COPD) di hospital Universiti Kebangsaan Malaysia [M.S. thesis], Universiti Kebangsaan Malaysia, 2007.
[10]  L. Kish, Survey Sampling, John Wiley & Sons, New York, NY, USA, 1965.
[11]  International Society for the Advancement of Kinanthropometry, International Standard for Anthropometric Assessment (ISAK), National Library of Australia, 1st edition, 2001.
[12]  R. D. Lee and D. C. Nieman, Nutritional Assessment, McGraw-Hill, New York, NY, USA, 4th edition, 2007.
[13]  T. G. Lohman, A. F. Roche, and R. Martorell, Eds., Anthropomeric Standardization Reference Manual, Human Kinetics Books, Champaign, Ill, USA, 1988.
[14]  National Health and Nutrition Examination Servey (NHANES III), Body measurements (Anthropometry). Westat, Inc. 1650 Research Boulevard Rockville, Md, USA, 20850 (301) 251–1500, 1988.
[15]  E. S. Tee and S. C. Khor, “Simultaneous determination of retinol, carotenoids and tocopherol in human serum by high pressure liquid chromatography,” Malaysian Journal of Nutrition, vol. 1, pp. 151–170, 1995.
[16]  B. Zhao, S. Y. Tham, J. Lu, M. H. Lai, L. K. H. Lee, and S. M. Moochhala, “Simultaneous determination of vitamins C, E and β-carotene in human plasma by high-performance liquid chromatography with photodiode-array detection,” Journal of Pharmacy and Pharmaceutical Sciences, vol. 7, no. 2, pp. 200–204, 2004.
[17]  I. F. F. Benzie and J. J. Strain, “Ferric reducing/antioxidant power assay: direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration,” Methods in Enzymology, vol. 299, pp. 15–27, 1998.
[18]  T. B. VanItallie, M.-U. Yang, S. B. Heymsfield, R. C. Funk, and R. A. Boileau, “Height-normalized indices of the body's fat-free mass and fat mass: potentially useful indicators of nutritional status,” American Journal of Clinical Nutrition, vol. 52, no. 6, pp. 953–959, 1990.
[19]  National Coordinating Committee on Food and Nutrition (NCCFN), Ministry of Health Malaysia, Recommended Nutrient Intake for Malaysia: A report of the Technical Working Group on Nutritional Guidelines, 2005.
[20]  A. M. W. J. Schols, P. B. Soeters, A. M. C. Dingemans, R. Mostert, P. J. Frantzen, and E. F. M. Wouters, “Prevalence and characteristics of nutritional depletion in patients with stable COPD eligible for pulmonary rehabilitation,” American Review of Respiratory Disease, vol. 147, no. 5, pp. 1151–1156, 1993.
[21]  M. A. P. Vermeeren, E. C. Creutzberg, A. M. W. J. Schols et al., “Prevalence of nutritional depletion in a large out-patient population of patients with COPD,” Respiratory Medicine, vol. 100, no. 8, pp. 1349–1355, 2006.
[22]  I. M. Ferreira, D. Brooks, Y. Lacasse, and R. S. Goldstein, “Nutritional support for individuals with COPD: a meta-analysis,” Chest, vol. 117, no. 3, pp. 672–678, 2000.
[23]  J. J. Soler, L. Sánchez, P. Román, M. A. Martínez, and M. Perpi?á, “Prevalence of malnutrition in outpatients with stable chronic obstructive pulmonary disease,” Archivos de Bronconeumologia, vol. 40, no. 6, pp. 250–258, 2004.
[24]  Y. M. Yang, T. Y. Sun, and X. M. Liu, “The role of serum leptin and tumor necrosis factor-α in malnutrition of male chronic obstructive pulmonary disease patients,” Chinese Medical Journal, vol. 119, no. 8, pp. 628–633, 2006.
[25]  S. R. Braun, N. L. Keim, R. M. Dixon, et al., “The prevalence and determinants of nutritional changes in chronic obstructive pulmonary disease,” Chest, vol. 86, no. 4, pp. 558–563, 1984.
[26]  R. Hallin, U. K. Koivisto-Hursti, E. Lindberg, and C. Janson, “Nutritional status, dietary energy intake and the risk of exacerbations in patients with chronic obstructive pulmonary disease (COPD),” Respiratory Medicine, vol. 100, no. 3, pp. 561–567, 2006.
[27]  A. R. Suriah, M. J. Zainorni, S. Shafawi et al., “Nutrient intake among elderly in Southern Peninsular Malaysia,” Malaysian Journal of Nutrition, vol. 2, pp. 11–19, 1996.
[28]  S. Shahar, Z. Ibrahim, A. R. A. Fatah et al., “A multidimensional assessment of nutritional and health status of rural elderly Malays,” Asia Pacific Journal of Clinical Nutrition, vol. 16, no. 2, pp. 346–353, 2007.
[29]  C. Landbo, E. Prescott, P. Lange, J. Vestbo, and T. P. Almdal, “Prognostic value of nutritional status in chronic obstructive pulmonary disease,” American Journal of Respiratory and Critical Care Medicine, vol. 160, no. 6, pp. 1856–1861, 1999.
[30]  S. Odencrants, M. Ehnfors, and S. J. Grobe, “Living with chronic obstructive pulmonary disease (COPD): part II. RNs' experience of nursing care for patients with COPD and impaired nutritional status,” Scandinavian Journal of Caring Sciences, vol. 21, no. 1, pp. 56–63, 2007.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413