Highly active antiretroviral therapy has given the chance to those living with HIV to keep on living, allowing them the opportunity to age and perhaps age successfully. Yet, there are severe challenges to successful aging with HIV, one of which is cognitive deficits. Nearly half of those with HIV experience cognitive deficits that can interfere with everyday functioning, medical decision making, and quality of life. Given that cognitive deficits develop with more frequency and intensity with increasing age, concerns mount that as people age with HIV, they may experience more severe cognitive deficits. These concerns become especially germane given that by 2015, 50% of those with HIV will be 50 and older, and this older cohort of adults is expected to grow. As such, this paper focuses on the etiologies of such cognitive deficits within the context of cognitive reserve and neuroplasticity. From this, evidence-based and hypothetical prevention (i.e., cognitive prescriptions), rehabilitation (i.e., speed of processing training), and mitigation (i.e., spaced retrieval method) strategies are reviewed. Implications for nursing practice and research are posited. 1. Introduction Highly active antiretroviral therapy (HAART) helps treat and prevent the spread of HIV [1–4] but also provides the opportunity for people to age with this disease [5]. This is welcome news to the 33 million people worldwide who are living with this disease [6]. Still, this population represents an enormous strain on the healthcare system of many countries grappling with this disease. For example, in South Africa approximately 17.8% of those between 18 and 49 are infected with HIV [6, 7], which means they must make difficult decisions in allocating resources and rationing healthcare [8–10]. All of this is occurring within the larger context of worldwide aging. The fastest growing age group on the planet is those 60 and older which constitutes 700 million people, and this cohort will swell to 2 billion by 2050 [11]. In part due to the unprecedented and historical event of global aging [12] along with HAART increasing the lifespan of those infected with HIV, the number of older adults with HIV is increasing ([5]; Figure 1). In the United States, it is projected that by 2015, half of those with HIV will be 50 and older [13, 14]. Although many are aging with this disease, later-life infections also occur. Those 50 and older account for 15% of all new diagnoses [15]. All of this ushers in new concerns such as how to promote quality of life and facilitate successful aging with HIV. Figure 1:
References
[1]
J. V. Fernández-Montero, P. Barreiro, J. Del Romero, and V. Soriano, “Antiretroviral drugs for pre-exposure prophylaxis of HIV infection,” AIDS Review, vol. 14, no. 1, pp. 54–61, 2012.
[2]
M. W. Hull and J. Montaner, “Antiretroviral therapy: a key component of a comprehensive HIV prevention strategy,” Current HIV/AIDS Reports, vol. 8, no. 2, pp. 85–93, 2011.
[3]
C. J. McCabe, S. J. Goldie, and D. N. Fisman, “The cost-effectiveness of directly observed highly-active antiretroviral therapy in the third trimester in HIV-infected pregnant women,” PLoS ONE, vol. 5, no. 4, Article ID e10154, 2010.
[4]
E. Wood, M. J. Milloy, and J. S. Montaner, “HIV treatment as prevention among injection drug users,” Current Opinions in HIV/AIDS, vol. 7, no. 2, pp. 151–156, 2012.
[5]
D. E. Vance and F. P. Robinson, “Reconciling successful aging with HIV: a biopsychosocial overview,” Journal of HIV/AIDS and Social Services, vol. 3, no. 1, pp. 59–78, 2004.
[6]
UNAIDS, AIDS Epidemic, World Health Organization, Geneva, Switzerland, 2009, http://www.unaids.org/en/media/unaids/contentassets/dataimport/pub/report/2009/jc1700_epi_update_2009_en.pdf.
[7]
UNAIDS, “Global report: UNAIDS Report on the Global AIDS Epidemic 2010,” Joint United Nations Programme on HIV/AIDS, 2010.
[8]
G. Meyer-Rath, A. Brennan, L. Long, et al., “Cost and outcomes of paediatric antiretroviral treatment in South Africa,” AIDS, vol. 27, no. 2, pp. 243–250, 2012.
[9]
G. Meyer-Rath, A. Miners, A. C. Santos, E. Variava, and W. D. Venter, “Cost and resource use of patients on antiretroviral therapy in the urban and semi-urban public sectors of South Africa,” Journal of the Acquire Immunodeficiency Syndromes, vol. 61, no. 3, pp. e25–e32, 2012.
[10]
C. Ogunmefun, I. Friedman, N. Mothibe, and T. Mbatha, “A national audit of home and community-based care (HCBC) organisations in South Africa,” AIDS Care. In press.
[11]
United Nations, “Population ageing and development,” 2009, http://www.un.org/esa/population/publications/ageing/ageing2009chart.pdf.
[12]
C. Farrelly, “Global aging, well-ordered science, and prospection,” Rejuvenation Research, vol. 13, no. 5, pp. 607–612, 2010.
[13]
J. B. Kirk and M. B. Goetz, “Human immunodeficiency virus in an aging population, a complication of success,” Journal of the American Geriatrics Society, vol. 57, no. 11, pp. 2129–2138, 2009.
[14]
G. Smith, Aging Hearing: HIV Over Fifty, Exploring the New Threat, Senate Committee on Aging, Washington, DC, USA, 2006.
[15]
Centers for Disease Control and Preventions, HIV/AIDS Among Person Aged 50 and Older: CDC HIV/AIDS Facts, US Department of Health and Human Services, Washington, DC, USA, 2008.
[16]
P. B. Baltes and M. M. Baltes, “Psychological perspectives on successful aging: the model of selective optimization with compensation,” in Successful Aging: Perspectives from the Behavioral Sciences, P. B. Baltes and M. M. Baltes, Eds., pp. 1–34, Cambridge University Press, Cambridge, UK, 1990.
[17]
B. W. Becker, A. D. Thames, E. Woo, S. A. Castellon, and C. A. Hinkin, “Longitudinal change in cognitive function and medication adherence in HIV-infected adults,” AIDS and Behavior, vol. 15, no. 8, pp. 1888–1894, 2011.
[18]
D. E. Vance, J. A. Ross, L. Moneyham, K. F. Farr, and P. Fordham, “A model of cognitive decline and suicidal ideation in adults aging with HIV,” Journal of Neuroscience Nursing, vol. 42, no. 3, pp. 150–156, 2010.
[19]
L. J. Byom and L. Turkstra, “Effects of social cognitive demand on theory of mind in conversations of adults with traumatic brain injury,” International Journal of Language and Communication Disorders, vol. 47, no. 3, pp. 310–321, 2012.
[20]
E. Widera, V. Steenpass, D. Marson, and R. Sudore, “Finances in the older patient with cognitive impairment: ‘He didn't want me to take over’,” Journal of the American Medical Association, vol. 305, no. 7, pp. 698–706, 2011.
[21]
A. D. Thames, V. Streiff, S. M. Patel, S. E. Panos, S. A. Castellon, and C. H. Hinkin, “The role of HIV infection, cognition, and depression in risky decision-making,” Journal of Neuropsychiatry and Clinical Neuroscience, vol. 24, no. 3, pp. 340–348, 2012.
[22]
A. R. Giovagnoli, A. M. da Silva, A. Federico, and F. Cornelio, “On the personal facets of quality of life in chronic neurological disorders,” Neurology, vol. 21, no. 3-4, pp. 155–163, 2009.
[23]
N. S. Schutte, T. Searle, S. Meade, and N. A. Dark, “The effect of meaningfulness and integrative processing in expressive writing on positive and negative and life satisfaction,” Cognition and Emotion, vol. 26, no. 1, pp. 144–152, 2012.
[24]
D. E. Vance, “Increasing cognitive reserve may promote successful cognitive aging,” Nursing, vol. 2, pp. 27–32, 2012.
[25]
M. Reger, R. Welsh, J. Razani, D. J. Martin, and K. B. Boone, “A meta-analysis of the neuropsychological sequelae of HIV infection,” Journal of the International Neuropsychological Society, vol. 8, no. 3, pp. 410–424, 2002.
[26]
N. Sacktor, R. H. Lyles, R. Skolasky et al., “HIV-associated neurologic disease incidence changes: multicenter AIDS Cohort Study, 1990–1998,” Neurology, vol. 56, no. 2, pp. 257–260, 2001.
[27]
R. K. Heaton, D. B. Clifford, Franklin et al., “HIV-associated neurocognitive disorders persist in the era of potent antiretroviral therapy (CHARTER Study),” American Academy of Neurology, vol. 75, pp. 2087–2096, 2010.
[28]
M. R. Basso and R. A. Bornstein, “Estimated premorbid intelligence mediates neurobehavioral change in individuals infected with HIV across 12 months,” Journal of Clinical and Experimental Neuropsychology, vol. 22, no. 2, pp. 208–218, 2000.
[29]
M. R. Lentz, W. K. Kim, H. Kim, et al., “Alterations in brain metabolism during the first year of HIV infection,” Journal of Neurovirology, vol. 17, no. 3, pp. 220–229, 2011.
[30]
B. C. Schweinsburg, M. J. Taylor, O. M. Alhassoon et al., “Brain mitochondrial injury in human immunodeficiency virus-seropositive (HIV+) individuals taking nucleoside reverse transcriptase inhibitors,” Journal of NeuroVirology, vol. 11, no. 4, pp. 356–364, 2005.
[31]
K. Ritchie and J. Touchon, “Mild cognitive impairment: conceptual basis and current nosological status,” The Lancet, vol. 355, no. 9199, pp. 225–228, 2000.
[32]
J. A. Schneider, Z. Arvanitakis, L. Yu, P. A. Boyle, S. E. Leugans, and D. A. Bennett, “Cognitive impairment, decline and fluctuations in older community-dwelling subjects with Lewy bodies,” Brain, vol. 135, part 10, pp. 3005–3014, 2012.
[33]
D. E. Vance, P. L. Fazeli, J. Kaur, P. Pearce, and T. McGuiness, “Neuropsychology and cognitive health in healthy older adults: a brief overview for psychiatric nurses,” Journal of Psychosocial Nursing and Mental Health Services, vol. 50, no. 6, pp. 30–37, 2012.
[34]
J. T. Becker, O. L. Lopez, M. A. Dew, and H. J. Aizenstein, “Prevalence of cognitive disorders differs as a function of age in HIV virus infection,” AIDS, vol. 18, supplement 1, pp. S11–S18, 2004.
[35]
K. P. High, V. Valcour, and R. Paul, “HIV infection and dementia in older adults,” Clinical Infectious Diseases, vol. 42, no. 10, pp. 1449–1454, 2006.
[36]
N. Sacktor, R. Skolasky, O. A. Selnes et al., “Neuropsychological test profile differences between young and old human immunodeficiency virus-positive individuals,” Journal of NeuroVirology, vol. 13, no. 3, pp. 203–209, 2007.
[37]
L. A. Wendelken and V. Valcour, “Impact of HIV and aging on neuropsychological function,” Journal of Neurovirology, vol. 18, no. 4, pp. 256–263, 2012.
[38]
D. E. Vance and T. C. Struzick, “Addressing risk factors of cognitive impairment in adults aging with HIV: a social work model,” Journal of Gerontological Social Work, vol. 49, no. 4, pp. 51–77, 2007.
[39]
P. Ancuta, A. Kamat, K. J. Kunstman et al., “Microbial translocation is associated with increased monocyte activation and dementia in AIDS patients,” PLoS ONE, vol. 3, no. 6, Article ID e2516, 2008.
[40]
T. H. Burdo, M. R. Lentz, P. Autissier et al., “Soluble CD163 made by monocyte/macrophages is a novel marker of HIV activity in early and chronic infection prior to and after antiretroviral therapy,” Journal of Infectious Diseases, vol. 204, no. 1, pp. 154–163, 2011.
[41]
T. H. Burdo, J. Lo, S. Abbara et al., “Soluble CD163, a novel marker of activated macrophages, is elevated and associated with noncalcified coronary plaque in HIV-infected patients,” Journal of Infectious Disease, vol. 204, no. 8, pp. 1227–1236, 2011.
[42]
N. Thieblemont, L. Weiss, H. M. Sadeghi, C. Estcourt, and N. Haeffner-Cavaillon, “CD14loWCD16high: a cytokine-producing monocyte subset which expands during human immunodeficiency virus infection,” European Journal of Immunology, vol. 25, no. 12, pp. 3418–3424, 1995.
[43]
D. E. Vance, P. L. Fazeli, and C. A. Gakumo, “The impact of neuropsychological performance on everyday functioning between older and younger adults with and without HIV,” Journal of the Association of Nurses in AIDS Care. In press.
[44]
T. T. Baldewicz, J. Leserman, S. G. Silva et al., “Changes in neuropsychological functioning with progression of HIV-1 infection: results of an 8-year longitudinal investigation,” AIDS and Behavior, vol. 8, no. 3, pp. 345–355, 2004.
[45]
V. Valcour, C. Shikuma, B. Shiramizu et al., “Age, apolipoprotein E4, and the risk of HIV dementia: the Hawaii Aging with HIV Cohort,” Journal of Neuroimmunology, vol. 157, no. 1-2, pp. 197–202, 2004.
[46]
M. Cherner, R. J. Ellis, D. Lazzaretto et al., “Effects of HIV-1 infection and aging on neurobehavioral functioning: preliminary findings,” AIDS, vol. 18, supplement 1, pp. S27–S34, 2004.
[47]
D. J. Hardy and D. E. Vance, “The neuropsychology of HIV/AIDS in older adults,” Neuropsychology Review, vol. 19, no. 2, pp. 263–272, 2009.
[48]
K. A. Lindl, D. R. Marks, D. L. Kolson, and K. L. Jordan-Sciutto, “HIV-associated neurocognitive disorder: pathogenesis and therapeutic opportunities,” Journal of Neuroimmune Pharmacology, vol. 5, no. 3, pp. 294–309, 2010.
[49]
L. Malaspina, S. P. Woods, D. J. Moore et al., “Successful cognitive aging in persons living with HIV infection,” Journal of NeuroVirology, vol. 17, no. 1, pp. 110–119, 2011.
[50]
E. E. Morgan, S. P. Woods, L. Delano-Wood, M. W. Bondi, and I. Grant, “Intraindividual variability in HIV infection: evidence for greater neurocognitive dispersion in older HIV seropositive adults,” Neuropsychology, vol. 25, no. 5, pp. 645–654, 2011.
[51]
V. Valcour, R. Paul, J. Nevhaus, and C. Shikuma, “The effects of age and HIV on neuropsychological performance,” Journal of the International Neuropsychological Society, vol. 17, no. 1, pp. 190–195, 2011.
[52]
V. Valcour and B. Shiramizu, “HIV-associated dementia, mitochondrial dysfunction, and oxidative stress,” Mitochondrion, vol. 4, no. 2-3, pp. 119–129, 2004.
[53]
R. D. Fields, The other Brain: from Dementia to Schizophrenia, How New Discoveries about the Brain are Revolutionizing Medicine and Science, Simon & Schuster, New York, NY, USA, 2009.
[54]
R. Restak, Think Smart: A Neuroscientist’s Prescription for Improving Brain’s Performance, Penguin, New York, NY, USA, 2009.
[55]
Y. Stern, “Cognitive reserve,” Neuropsychologia, vol. 47, no. 10, pp. 2015–2028, 2009.
[56]
D. E. Vance and M. Crowe, “A proposed model of neuroplasticity and cognitive reserve in older adults,” Activities, Adaptation and Aging, vol. 30, no. 3, pp. 61–79, 2006.
[57]
D. E. Vance and M. A. Wright, “Positive and negative neuroplasticity: implications for age, related cognitive declines,” Journal of Gerontological Nursing, vol. 35, no. 6, pp. 11–17, 2009.
[58]
C. L. Haass-Koffler and S. E. Bartlett, “Stress and addiction: contribution of the corticotropin releasing factor (CRF) system in neuroplasticity,” Frontiers in Molecular Neuroscience, vol. 5, article 91, 2012.
[59]
S. Koganemaru, K. Domen, H. Fukuyama, and T. Mima, “Negative emotion can enhance human motor cortical plasticity,” European Journal of Neuroscience, vol. 35, pp. 1637–1645, 2012.
[60]
D. E. Vance, “Implications of positive and negative neuroplasticity on cognition in HIV,” Medical Science Monitor, vol. 16, no. 4, pp. HY3–HY5, 2010.
[61]
D. E. Vance, A. J. Roberson, T. M. Mcguinness, and P. L. Fazeli, “How neuroplasticity and cognitive reserve protect cognitive functioning,” Journal of Psychosocial Nursing and Mental Health Services, vol. 48, no. 4, pp. 23–30, 2010.
[62]
D. E. Vance, J. Kaur, P. L. Fazeli, et al., “Neuroplasticity and successful cognitive aging: a brief overview for nursing,” Journal of Neuroscience Nursing, vol. 44, no. 4, pp. 218–227, 2012.
[63]
M. C. Diamond, “An optimistic view of the aging brain,” Generations, vol. 17, no. 1, pp. 31–33, 1993.
[64]
S. Kobayashi, Y. Ohashi, and S. Ando, “Effects of enriched environments with different durations and starting times on learning capacity during aging in rats assessed by a refined procedure of the Hebb-Williams maze task,” Journal of Neuroscience Research, vol. 70, no. 3, pp. 340–346, 2002.
[65]
N. W. Milgram, E. Head, S. C. Zicker et al., “Learning ability in aged beagle dogs is preserved by behavioral enrichment and dietary fortification: a two-year longitudinal study,” Neurobiology of Aging, vol. 26, no. 1, pp. 77–90, 2005.
[66]
V. Paban, M. Jaffard, C. Chambon, M. Malafosse, and B. Alescio-Lautier, “Time course of behavioral changes following basal forebrain cholinergic damage in rats: environmental enrichment as a therapeutic intervention,” Neuroscience, vol. 132, no. 1, pp. 13–32, 2005.
[67]
L. Petrosini, P. De Bartolo, F. Foti et al., “On whether the environmental enrichment may provide cognitive and brain reserves,” Brain Research Reviews, vol. 61, no. 2, pp. 221–239, 2009.
[68]
S. Urakawa, H. Hida, T. Masuda, S. Misumi, T. S. Kim, and H. Nishino, “Environmental enrichment brings a beneficial effect on beam walking and enhances the migration of doublecortin-positive cells following striatal lesions in rats,” Neuroscience, vol. 144, no. 3, pp. 920–933, 2007.
[69]
H. Van Praag, G. Kempermann, and F. H. Gage, “Neural Consequences of environmental enrichment,” Nature Reviews Neuroscience, vol. 1, no. 3, pp. 191–198, 2000.
[70]
E. A. Maguire, D. G. Gadian, I. S. Johnsrude et al., “Navigation-related structural change in the hippocampi of taxi drivers,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 8, pp. 4398–4403, 2000.
[71]
E. A. Maguire, K. Woollett, and H. J. Spiers, “London taxi drivers and bus drivers: a structural MRI and neuropsychological analysis,” Hippocampus, vol. 16, no. 12, pp. 1091–1101, 2006.
[72]
J. Boyke, J. Driemeyer, C. Gaser, C. Büchel, and A. May, “Training-induced brain structure changes in the elderly,” Journal of Neuroscience, vol. 28, no. 28, pp. 7031–7035, 2008.
[73]
C. Brayne, P. G. Ince, H. A. D. Keage et al., “Education, the brain and dementia: neuroprotection or compensation?” Brain, vol. 133, part 8, pp. 2210–2216, 2010.
[74]
S. Gauthier and C. Ballard, Management of Dementia, Informa Healthcare USA, New York, NY, USA, 2nd edition, 2009.
[75]
C. M. Roe, M. A. Mintun, G. D'Angelo, C. Xiong, E. A. Grant, and J. C. Morris, “Alzheimer disease and cognitive reserve: variation of education effect with carbon 11-labeled pittsburgh compound B uptake,” Archives of Neurology, vol. 65, no. 11, pp. 1467–1471, 2008.
[76]
C. Berry and K. P. Balachandran, “Importance of collateral circulation in coronary heasrt disease,” European Heart Journal, vol. 28, no. 3, pp. 278–291, 2007.
[77]
J. M. Foley, M. L. Ettenhofer, M. S. Kim, N. Behdin, and S. A. Castellon, “Cognitive reserve as a protective factor in older HIV-positive patients at risk of cognitive decline,” Applied Neuropsychology: Adult, vol. 19, no. 1, pp. 16–25, 2012.
[78]
A. C. Satori, D. E. Vance, L. Z. Slater, and M. Crowe, “The impact of inflammation on cognitive function in older adults: implications for healthcare practice and research,” Journal of Neuroscience Nursing, vol. 44, no. 4, pp. 206–217, 2012.
[79]
A. C. Hearps, T. A. Angelovich, A. Jaworowski, J. Mills, A. L. Landay, and S. M. Crowe, “HIV infection and aging of the innate immune system,” Sexual Health, vol. 8, no. 4, pp. 453–464, 2011.
[80]
B. T. Baune, G. Ponath, J. Golledge et al., “Association between IL-8 cytokine and cognitive performance in an elderly general population-The MEMO-Study,” Neurobiology of Aging, vol. 29, no. 6, pp. 937–944, 2008.
[81]
J. P. Godbout and R. W. Johnson, “Age and neuroinflammation: a lifetime of psychoneuroimmune consequences,” Neurologic Clinics, vol. 24, no. 3, pp. 521–538, 2006.
[82]
G. Ravaglia, P. Forti, F. Maioli et al., “The clock-drawing test in elderly Italian community dwellers: associations with sociodemographic status and risk factors for vascular cognitive impairment,” Dementia and Geriatric Cognitive Disorders, vol. 16, no. 4, pp. 287–295, 2003.
[83]
K. Yaffe, K. Lindquist, Penninx et al., “Inflammatory markers and cognition in well-functioning African-American and white elders,” Neurology, vol. 61, no. 1, pp. 76–80, 2003.
[84]
I. Kusao, B. Shiramizu, C. Y. Liang, et al., “Cognitive performance related to HIV-1-infected monocytes,” Journal of Neuropsychiatry and Clinical Neuroscience, vol. 24, no. 1, pp. 71–80, 2012.
[85]
P. M. Thompson, R. A. Dutton, K. M. Hayashi et al., “Thinning of the cerebral cortex visualized in HIV/AIDS reflects CD4+ T lymphocyte decline,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 43, pp. 15647–15652, 2005.
[86]
D. E. Vance, K. I. Larsen, G. Eagerton, and M. A. Wright, “Comorbidities and cognitive functioning: implications for nursing practice and research,” Journal of Neuroscience Nursing, vol. 43, no. 4, pp. 215–224, 2011.
[87]
F. E. de Leeuw, J. C. de Groot, M. Oudkerk et al., “Hypertension and cerebral white matter lesions in a prospective cohort study,” Brain, vol. 125, no. 4, pp. 765–772, 2002.
[88]
D. Liao, L. Cooper, J. Cai et al., “Presence and severity of cerebral white matter lesions and hypertension, its treatment, and its control: the ARIC study,” Stroke, vol. 27, no. 12, pp. 2262–2270, 1996.
[89]
H. Bruehl, O. T. Wolf, V. Sweat, A. Tirsi, S. Richardson, and A. Convit, “Modifiers of cognitive function and brain structure in middle-aged and elderly individuals with type 2 diabetes mellitus,” Brain Research, vol. 1280, pp. 186–194, 2009.
[90]
O. I. Okereke, J. H. Kang, N. R. Cook et al., “Type 2 diabetes mellitus and cognitive decline in two large cohorts of community-dwelling older adults,” Journal of the American Geriatrics Society, vol. 56, no. 6, pp. 1028–1036, 2008.
[91]
H. Umegaki, T. Hayashi, H. Nomura, et al., “Cognitive dysfunction: an emerging concept of a new diabetic complications in the elderly,” Geriatrics and Gerontology International, vol. 13, no. 1, pp. 28–34, 2012.
[92]
G. Guaraldi, G. Orlando, S. Zona, et al., “Premature age-related comorbidities among HIV-infected persons compared with the general population,” 2011 Clinical Infectious Diseases, vol. 53, pp. 1120–1126.
[93]
K. K. Oursler, J. L. Goulet, S. Crystal et al., “Association of age and comorbidity with physical function in hiv-infected and uninfected patients: results from the veterans aging cohort study,” AIDS Patient Care and STDs, vol. 25, no. 1, pp. 13–20, 2011.
[94]
D. E. Vance, M. Mugavero, J. Willig, J. L. Raper, and M. S. Saag, “Aging with HIV: a cross-sectional study of comorbidity prevalence and clinical characteristics across decades of life,” The Journal of the Association of Nurses in AIDS Care, vol. 22, no. 1, pp. 17–25, 2011.
[95]
S. Hekimi, J. Lapointe, and J. Wen, “Taking a “good” look at free radicals in the aging process,” Trends in Cell Biology, vol. 21, no. 10, pp. 569–576, 2011.
[96]
S. Asha Devi, “Aging brain: prevention of oxidative stress by vitamin E and exercise,” The Scientific World Journal, vol. 9, pp. 366–372, 2009.
[97]
R. Singh, S. S. Kanwar, P. K. Sood, and B. Nehru, “Beneficial effects of folic acid on enhancement of memory and antioxidant status in aged rat brain,” Cellular and Molecular Neurobiology, vol. 31, no. 1, pp. 83–91, 2011.
[98]
J. A. Joseph, B. Shukitt-Hale, N. A. Denisova et al., “Reversals of age-related declines in neuronal signal transduction, cognitive, and motor behavioral deficits with blueberry, spinach, or strawberry dietary supplementation,” Journal of Neuroscience, vol. 19, no. 18, pp. 8114–8121, 1999.
[99]
J. A. Joseph, B. Shukitt-Hale, N. A. Denisova et al., “Long-term dietary strawberry, spinach, or vitamin E supplementation retards the onset of age-related neuronal signal-transduction and cognitive behavioral deficits,” Journal of Neuroscience, vol. 18, no. 19, pp. 8047–8055, 1998.
[100]
T. N. Akbaraly, I. Hininger-Favier, I. Carrière et al., “Plasma selenium over time and cognitive decline in the elderly,” Epidemiology, vol. 18, no. 1, pp. 52–58, 2007.
[101]
J. A. Joseph, B. Shukitt-Hale, G. Casadesus, and D. Fisher, “Oxidative stress and inflammation in brain aging: nutritional considerations,” Neurochemical Research, vol. 30, no. 6-7, pp. 927–935, 2005.
[102]
S. A. Mandel, T. Amit, O. Weinreb, and M. B. H. Youdim, “Understanding the broad-spectrum neuroprotective action profile of green tea polyphenols in aging and neurodegenerative diseases,” Journal of Alzheimer's Disease, vol. 25, no. 2, pp. 187–208, 2011.
[103]
C. B. Pocernich, M. L. B. Lange, R. Sultana, and D. A. Butterfield, “Nutritional approaches to modulate oxidative stress in Alzheime's disease,” Current Alzheimer Research, vol. 8, no. 5, pp. 452–469, 2011.
[104]
C. C. Tangney, Y. Tang, D. A. Evans, and M. C. Morris, “Biochemical indicators of vitamin B12 and folate insufficiency and cognitive decline,” Neurology, vol. 72, no. 4, pp. 361–367, 2009.
[105]
L. Z. Slater, L. Moneyham, D. E. Vance, J. L. Raper, M. Mugavero, and G. Childs, “Support, stigma, health, coping, and quality of life in older gay men with HIV,” Journal of the Association of Nurses in AIDS Care, vol. 24, no. 1, pp. 38–49, 2013.
[106]
R. M. Reynolds, “Glucocorticoid excess and the developmental origins of disease: two decades of testing the hypothesis,” Psychoneuroendocrinology, vol. 38, no. 1, pp. 1–11, 2013.
[107]
T. Jones and M. D. Moller, “Implications of hypothalamic-pituitary-adrenal axis functioning in posttraumatic stress disorder,” Journal of the American Psychiatric Nurses Association, vol. 17, no. 6, pp. 393–403, 2011.
[108]
K. Hoehn and E. N. Marieb, Human Anatomy and Physiology, Benjamin Cummings, San Francisco, Calif, USA, 2010.
[109]
G. P. Chrousos and P. W. Gold, “The concepts of stress and stress system disorders: overview of physical and behavioral homeostasis,” Journal of the American Medical Association, vol. 267, no. 9, pp. 1244–1252, 1992.
[110]
S. J. Lupien, A. Fiocco, N. Wan et al., “Stress hormones and human memory function across the lifespan,” Psychoneuroendocrinology, vol. 30, no. 3, pp. 225–242, 2005.
[111]
B. K. Lee, T. A. Glass, M. J. McAtee et al., “Associations of salivary cortisol with cognitive function in the Baltimore memory study,” Archives of General Psychiatry, vol. 64, no. 7, pp. 810–818, 2007.
[112]
A. S. Karlamangla, B. H. Singer, J. Chodosh, B. S. McEwen, and T. E. Seeman, “Urinary cortisol excretion as a predictor of incident cognitive impairment,” Neurobiology of Aging, vol. 26, pp. S80–S84, 2005.
[113]
R. A. Shippy and S. E. Karpiak, “The aging HIV/AIDS population: fragile social networks,” Aging and Mental Health, vol. 9, no. 3, pp. 246–254, 2005.
[114]
C. Grov, S. A. Golub, J. T. Parsons, M. Brennan, and S. E. Karpiak, “Loneliness and HIV-related stigma explain depression among older HIV-positive adults,” AIDS Care, vol. 22, no. 5, pp. 630–639, 2010.
[115]
S. C. Kalichman, T. Heckman, A. Kochman, K. Sikkema, and J. Bergholte, “Depression and thoughts of suicide among middle-aged and older persons living with HIV-AIDS,” Psychiatric Services, vol. 51, no. 7, pp. 903–907, 2000.
[116]
A. Gonzalez, M. J. Mimiaga, J. Israel, C. A. Bedoya, and S. A. Safren, “Substance use predictors of poor medication adherence: the role of substance use coping among HIV-infected patients in opioid dependence treatment,” AIDS and Behavior, vol. 17, no. 1, pp. 168–173, 2013.
[117]
M. C. Hampton, P. N. Halkitis, and J. S. Mattis, “Coping, drug use, and religiosity/spirituality in relation to HIV serostatus among gay and bisexual men,” AIDS Education and Prevention, vol. 22, no. 5, pp. 417–429, 2010.
[118]
R. Schuster, M. Bornovalova, and E. Hunt, “The influence of depression on the progression of HIV: direct and indirect effects,” Behavior Modification, vol. 36, no. 2, pp. 123–145, 2012.
[119]
K. J. Anstey, “Alcohol exposure and cognitive development: an example of why we need a contextualized, dynamic life course approach to cognitive ageing—a mini-review,” Gerontology, vol. 54, no. 5, pp. 283–291, 2008.
[120]
V. Kumar and L. J. Kinsella, “Healthy brain aging: effect of head injury, alcohol and environmental toxins,” Clinics in Geriatric Medicine, vol. 26, no. 1, pp. 29–44, 2010.
[121]
D. R. Brown, “Role of microglia in age-related changes to the nervous system,” The Scientific World Journal, vol. 9, pp. 1061–1071, 2009.
[122]
K. L. Medina, A. D. Schweinsburg, M. Cohen-Zion, B. J. Nagel, and S. F. Tapert, “Effects of alcohol and combined marijuana and alcohol use during adolescence on hippocampal volume and asymmetry,” Neurotoxicology and Teratology, vol. 29, no. 1, pp. 141–152, 2007.
[123]
P. L. Fazeli, J. C. Marceux, D. E. Vance, L. Slater, and C. A. Long, “Predictors of cognition in adults with HIV: implications for nursing practice and research,” Journal of Neuroscience Nursing, vol. 42, no. 1, pp. 36–50, 2011.
[124]
T. Al-Khindi, K. K. Zakzanis, and W. G. van Gorp, “Does antiretroviral therapy improve HIV-associated cognitive impairment? A quantitative review of the literature,” Journal of the International Neuropsychological Society, vol. 17, no. 6, pp. 956–969, 2011.
[125]
T. D. Parsons, A. J. Braaten, C. D. Hall, and K. R. Robertson, “Better quality of life with neuropsychological improvement on HAART,” Health and Quality of Life Outcomes, vol. 4, article 11, 2006.
[126]
P. P. Koopmans, R. Ellis, B. M. Best, and S. Letendre, “Should antiretroviral therapy for HIV infection be tailored for intracerebral penetration?” Netherlands Journal of Medicine, vol. 67, no. 6, pp. 206–211, 2009.
[127]
Y. O. Obiabo and O. A. Ogunrin, “Effects of highly active antiretroviral therapy on cognitive functions in severely immune-compromised HIV-seropositive patients,” Journal of the Neurological Sciences, vol. 313, no. 1-2, pp. 115–122, 2012.
[128]
S. Letendre, J. Marquie-Beck, E. Capparelli et al., “Validation of the CNS penetration-effectiveness rank for quantifying antiretroviral penetration into the central nervous system,” Archives of Neurology, vol. 65, no. 1, pp. 65–70, 2008.
[129]
A. A. Howard, J. H. Arnsten, Y. Lo et al., “A prospective study of adherence and viral load in a large multi-center cohort of HIV-infected women,” AIDS, vol. 16, no. 16, pp. 2175–2182, 2002.
[130]
J. L. Raper, “The medical managment of HIV disease,” in The Person with HIV/AIDS: Nursing Perspective, J. D. Durham and F. R. Lashley4th, Eds., pp. 221–291, Springer, New York, NY, USA, 2010.
[131]
M. L. Ettenhofer, J. Foley, S. A. Castellon, and C. H. Hinkin, “Reciprocal prediction of medication adherence and neurocognition in HIV/AIDS,” Neurology, vol. 74, no. 15, pp. 1217–1222, 2010.
[132]
M. L. Ettenhofer, C. H. Hinkin, S. A. Castellon et al., “Aging, neurocognition, and medication adherence in HIV infection,” American Journal of Geriatric Psychiatry, vol. 17, no. 4, pp. 281–290, 2009.
[133]
A. D. Thames, M. S. Kim, B. W. Becker, et al., “Medication and finance management among HIV-infected adults: the impact of age and cognition,” Journal of Clinical and Experimental Neuropsychology, vol. 33, no. 2, pp. 200–209, 2011.
[134]
N. Ciccarelli, M. Fabbiani, S. Di Giambenedetto et al., “Efavirenz associated with cognitive disorders in otherwise asymptomatic HIV-infected patients,” Neurology, vol. 76, no. 16, pp. 1403–1409, 2011.
[135]
S. W. Perry, J. P. Norman, A. Litzburg, D. Zhang, S. Dewhurst, and H. A. Gelbard, “HIV-1 transactivator of transcription protein induces mitochondrial hyperpolarization and synaptic stress leading to apoptosis,” Journal of Immunology, vol. 174, no. 7, pp. 4333–4344, 2005.
[136]
G. Logroscino, J. H. Kang, and F. Grodstein, “Prospective study of type 2 diabetes and cognitive decline in women aged 70–81 years,” British Medical Journal, vol. 328, no. 7439, pp. 548–551, 2004.
[137]
P. C. Elwood, J. Pickering, A. Bayer, and J. E. J. Gallacher, “Vascular disease and cognitive function in older men in the Caerphilly cohort,” Age and Ageing, vol. 31, no. 1, pp. 43–48, 2002.
[138]
F. Harrington, B. K. Saxby, I. G. McKeith, K. Wesnes, and G. A. Ford, “Cognitive performance in hypertensive and normotensive older subjects,” Hypertension, vol. 36, no. 6, pp. 1079–1082, 2000.
[139]
Y. Yakushiji, T. Noguchi, M. Hara, et al., “Distributional impact of brain microbleeds on global cognitive function in adults without neurological disorder,” Stroke, vol. 43, no. 7, pp. 1800–1805, 2012.
[140]
S. Viamonte, D. Vance, V. Wadley, D. Roenker, and K. Ball, “Driving-related cognitive performance in older adults with pharmacologically treated cardiovascular disease,” Clinical Gerontologist, vol. 33, no. 2, pp. 109–123, 2010.
[141]
R. Fogari, A. Mugellini, A. Zoppi et al., “Influence of losartan and atenolol on memory function in very elderly hypertensive patients,” Journal of Human Hypertension, vol. 17, no. 11, pp. 781–785, 2003.
[142]
N. C. Li, A. Lee, R. A. Whitmer et al., “Use of angiotensin receptor blockers and risk of dementia in a predominantly male population: prospective cohort analysis,” British Medical Journal, vol. 340, Article ID b5465, 2010.
[143]
M. Braganca and A. Palha, “Depression and neurocognitive performance in Portuguese patients infected with HIV,” AIDS and Behavior, vol. 15, no. 8, pp. 1879–1887, 2011.
[144]
A. D. Thames, B. W. Becker, T. D. Marcotte et al., “Depression, cognition, and self-appraisal of functional abilities in HIV: an examination of subjective appraisal versus objective performance,” Clinical Neuropsychologist, vol. 25, no. 2, pp. 224–243, 2011.
[145]
D. E. Vance, J. E. Dodson, J. Watkins, B. H. Kennedy, and N. L. Keltner, “Neurological and psychiatric diseases and their unique cognitive profiles: implications for nursing practice and research,” Journal of Neuroscience Nursing. In press.
[146]
K. H. Claypoole, A. J. Elliott, K. K. Uldall et al., “Cognitive functions and complaints in HIV-1 individuals treated for depression,” Applied Neuropsychology, vol. 5, no. 2, pp. 74–84, 1998.
[147]
K. N. Devlin, A. Gongvatana, U. S. Clark et al., “Neurocognitive effects of HIV, hepatitis C, and substance use history,” Journal of the International Neuropsychological Society, vol. 18, no. 1, pp. 68–78, 2012.
[148]
C. S. Meade, N. A. Conn, L. M. Skalski, and S. A. Safren, “Neurocognitive impairment and medication adherence in HIV patients with and without cocaine dependence,” Journal of Behavioral Medicine, vol. 34, no. 2, pp. 128–138, 2011.
[149]
A. J. Applebaum, M. W. Otto, M. A. Richardson, and S. A. Safren, “Contributors to neuropsychological impairment in HIV-infected and HIV-uninfected opiate-dependent patients,” Journal of Clinical and Experimental Neuropsychology, vol. 32, no. 6, pp. 579–589, 2010.
[150]
M. Cherner, P. Suarez, C. Casey et al., “Methamphetamine use parameters do not predict neuropsychological impairment in currently abstinent dependent adults,” Drug and Alcohol Dependence, vol. 106, no. 2-3, pp. 154–163, 2010.
[151]
D. A. Byrd, R. P. Fellows, S. Morgello, et al., “Neurocognitive impact of substance use in HIV infection,” Journal of Acquired Immune Deficiency Syndromes, vol. 58, no. 2, pp. 154–162, 2011.
[152]
J. E. Iudicello, S. P. Woods, O. Vigil et al., “Longer term improvement in neurocognitive functioning and affective distress among methamphetamine users who achieve stable abstinence,” Journal of Clinical and Experimental Neuropsychology, vol. 32, no. 7, pp. 704–718, 2010.
[153]
I. Grant, R. Reed, and K. M. Adams, “Diagnosis of intermediate-duration and subacute organic mental disorders in abstinent alcoholics,” Journal of Clinical Psychiatry, vol. 48, no. 8, pp. 319–323, 1987.
[154]
H. G. Pope, A. J. Gruber, J. I. Hudson, M. A. Huestis, and D. Yurgelun-Todd, “Neuropsychological performance in long-term cannabis users,” Archives of General Psychiatry, vol. 58, no. 10, pp. 909–915, 2001.
[155]
S. B. Rourke and I. Grant, “The interactive effects of age and length of abstinence on the recovery of neuropsychological functioning in chronic male alcoholics: a 2-year follow-up study,” Journal of the International Neuropsychological Society, vol. 5, no. 3, pp. 234–246, 1999.
[156]
W. W. Beatty, R. Tivis, H. D. Stott, S. J. Nixon, and O. A. Parsons, “Neuropsychological deficits in sober alcoholics: influences of chronicity and recent alcohol consumption,” Alcoholism, vol. 24, no. 2, pp. 149–154, 2000.
[157]
S. B. Rourke and I. Grant, “Neuropsychological correlates of alcoholism,” in Neuropsychological Assessment of Neuropsychiatric and Neuromedical Disorders, I. Grant and K. M. Adams, Eds., pp. 398–454, Oxford Press, New York, NY, USA, 3rd edition, 2009.
[158]
J. H. Atkins, S. L. Rubenstein, T. L. Sota, S. Rueda, H. Fenta, and J. Bacon, “Impact of social support on cognitive symptom burden in HIV/AIDS,” AIDS Care, vol. 22, no. 7, pp. 793–802, 2010.
[159]
J. T. Coyle, “Use it or lose it—do effortful mental activities protect against dementia?” The New England Journal of Medicine, vol. 348, no. 25, pp. 2489–2490, 2003.
[160]
P. P. Foster, K. P. Rosenblatt, and O. R. Kulji?, “Exercise-induced cognitive plasticity, implications for mild cognitive impairment and Alzheimer’s disease,” Frontiers in Neurology, vol. 2, no. 28, pp. 1–15, 2011.
[161]
Y. Feng and X. Wang, “Antioxidant therapies for Alzheimer’s disease,” Oxidative Medicine and Cellular Longevity, vol. 2012, Article ID 472932, 17 pages, 2012.
[162]
E. Kesse-Guyot, V. A. Andreeva, C. Jeandel, M. Ferry, S. Hercberg, and P. Galan, “A healthy dietary pattern in midlife is associated with subsequent cognitive performance,” The Journal of Nutrition, vol. 142, no. 5, pp. 909–915, 2012.
[163]
S. Schaffer, H. Assesburg, S. Kuntz, W. E. Muller, and G. P. Eckert, “Effects of polyphenols on brain ageing and Alzheimer’s disease: focus on mitochondria,” Molecular Neurobiology, vol. 46, no. 1, pp. 161–178, 2012.
[164]
E. Rrapo, Y. Zhu, J. Tian et al., “Green tea-EGCG reduces GFAP associated neuronal loss in HIV-1 Tat transgenic mice,” American Journal of Translational Research, vol. 1, no. 1, pp. 72–79, 2009.
[165]
D. E. Vance, G. Eagerton, B. Harnish, P. McKie, and P. L. Fazeli, “Cognitive prescriptions: a nursing approach to increasing cognitive reserve,” Journal of Gerontological Nursing, vol. 37, no. 4, pp. 22–29, 2011.
[166]
S. Rollnick, W. R. Miller, and C. C. Butler, Motivational Interviewing in Health Care: Helping Patients Change Behavior, Guilford Press, New York, NY, USA, 2007.
[167]
G. W. LaVigna and A. M. Donnellan, Alternatives to Punishment: Solving Behavior Problems with non-Aversive Strategies, Irvington, New York, NY, USA, 1986.
[168]
D. E. Vance, K. Heaton, Y. Eaves, and P. L. Fazeli, “Sleep and cognition on everyday functioning in older adults: implications for nursing practice and research,” Journal of Neuroscience Nursing, vol. 43, no. 5, pp. 261–273, 2011.
[169]
H. Noice and T. Noice, “A theatrical intervention to improve cognition in intact residents of long term care facilities,” Clinical Gerontologist, vol. 29, no. 3, pp. 59–76, 2006.
[170]
D. E. Vance, M. A. Graham, P. L. Fazeli, K. Heaton, and L. Moneyham, “An overview of non-pathological geroneuropsychology: implications for nursing practice and research,” Journal of Neuroscience Nursing, vol. 44, no. 1, pp. 43–53, 2012.
[171]
D. Vance, J. Dawson, V. Wadley et al., “The accelerate study: the longitudinal effect of speed of processing training on cognitive performance of older adults,” Rehabilitation Psychology, vol. 52, no. 1, pp. 89–96, 2007.
[172]
T. D. Marcotte, R. K. Heaton, T. Wolfson et al., “The impact of HIV-related neuropsychological dysfunction on driving behavior,” Journal of the International Neuropsychological Society, vol. 5, no. 7, pp. 579–592, 1999.
[173]
J. M. Wood, A. Chaparro, P. Lacherez, and L. Hickson, “Useful field of view predicts driving in the presence of distractors,” Optometry and Vision Science, vol. 89, no. 4, pp. 373–381, 2012.
[174]
D. E. Vance, P. L. Fazeli, L. Ross, V. G. Wadley, and K. K. Ball, “Speed of processing training with middle-aged and older adults with HIV: a pilot study,” Journal of the Association of Nurses in AIDS Care, vol. 23, no. 6, pp. 500–510, 2012.
[175]
D. E. Vance, P. McNees, and K. Meneses, “Technology, cognitive remediation, and nursing: directions for successful cognitive aging,” Journal of Gerontological Nursing, vol. 35, no. 2, pp. 50–56, 2009.
[176]
M. S. George and G. Aston-Jones, “Noninvasive techniques for probing neurocircuitry and treating illness: vagus nerve stimulation (VNS), transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS),” Neuropsychopharmacology, vol. 35, no. 1, pp. 301–316, 2010.
[177]
C. Miniussi and G. Vallar, “Brain stimulation and behavioural cognitive rehabilitation: a new tool for neurorehabilitation?” Neuropsychological Rehabilitation, vol. 21, no. 5, pp. 553–559, 2011.
[178]
V. Walsh and A. Pascual-Leone, Transcranial Magnetic Stimulation: A Neurochronometrics of Mind, The MIT Press, Cambridge, Mass, USA, 2003.
[179]
L. M. Bullard, E. S. Browning, V. P. Clark et al., “Transcranial direct current stimulation's effect on novice versus experienced learning,” Experimental Brain Research, vol. 213, no. 1, pp. 9–14, 2011.
[180]
C. Cerruti and G. Schlaug, “Anodal transcranial direct current stimulation of the prefrontal cortex enhances complex verbal associative thought,” Journal of Cognitive Neuroscience, vol. 21, no. 10, pp. 190–197, 2009.
[181]
V. P. Clark, B. A. Coffman, A. R. Mayer, et al., “TDCS guided using fMRI significantly accelerates learning to identify concealed objects,” Neuroimage, vol. 59, no. 1, pp. 117–128, 2012.
[182]
A. Fl?el, W. Suttorp, O. Kohl et al., “Non-invasive brain stimulation improves object-location learning in the elderly,” Neurobiology of Aging, vol. 33, no. 8, pp. 1682–1689, 2012.
[183]
D. Fox, “Brain buzz,” Nature, vol. 472, pp. 156–159, 2011.
[184]
R. Lindenberg, V. Renga, L. L. Zhu, D. Nair, and G. Schlaug, “Bihemispheric brain stimulation facilitates motor recovery in chronic stroke patients,” Neurology, vol. 75, no. 24, pp. 2176–2184, 2010.
[185]
M. A. Nitsche, “Beyond the target area: remote effects of non-invasive brain stimulation in humans,” Journal of Physiology, vol. 489, part 13, pp. 3053–3054, 2011.
[186]
M. Rosedale, D. Malaspina, D. Malamud, et al., “Developing patient-center treatment protocols in brain stimulation: a rationale for combining quantitative and qualitative approaches in persons with HIV,” Journal of the American Nurses Association, vol. 18, no. 3, pp. 166–174, 2012.
[187]
H. Knotkova, M. Rosedale, S. Strauss, et al., “Using transcranial direct current stimulation to treat depression in HIV-infected persons: the outcomes of a feasibility study,” Frontiers in Psychiatry, vol. 3, no. 59, pp. 1–8, 2012.
[188]
D. E. Vance, T. Struzick, and K. Farr, “Spaced retrieval technique-a cognitive tool for social workers and their clients,” Journal of Gerontological Social Work, vol. 53, no. 2, pp. 148–158, 2010.
[189]
C. Haslam, K. I. Hodder, and P. J. Yates, “Errorless learning and spaced retrieval: how do these methods fare in healthy and clinical populations?” Journal of Clinical and Experimental Neuropsychology, vol. 33, no. 4, pp. 432–447, 2011.
[190]
K. L. Morrow and J. Fridriksson, “Comparing fixed- and randomized-interval spaced retrieval in anomia treatment,” Journal of Communication Disorders, vol. 39, no. 1, pp. 2–11, 2006.
[191]
M. M. Neundorfer, C. J. Camp, M. M. Lee, M. J. Skrajner, M. L. Malone, and J. R. Carr, “Compensating for cognitive deficits in persons aged 50 and over with HIV/AIDS: a pilot study of a cognitive intervention,” Journal of HIV/AIDS and Social Services, vol. 3, no. 1, pp. 79–97, 2004.
[192]
D. E. Vance, N. M. Webb, J. C. Marceaux, S. M. Viamonte, A. W. Foote, and K. K. Ball, “Mental stimulation, neural plasticity, and aging: directions for nursing research and practice,” Journal of Neuroscience Nursing, vol. 40, no. 4, pp. 241–249, 2008.
[193]
J. Huntley, D. Bor, A. Hampshire, A. Wen, and R. Howard, “Working memory task performance and chunking in early Alzheimer's disease,” British Journal of Psychiatry, vol. 198, no. 5, pp. 398–403, 2011.
[194]
D. Tomasi, N. D. Volkow, G. J. Wang et al., “Methylphenidate enhances brain activation and deactivation responses to visual attention and working memory tasks in healthy controls,” NeuroImage, vol. 54, no. 4, pp. 3101–3110, 2011.
[195]
Y. Harel, N. Appleboim, M. Lavie, and A. Achiron, “Single dose of methylphenidate improves cognitive performance in multiple sclerosis patients with impaired attention process,” Journal of the Neurological Sciences, vol. 276, no. 1-2, pp. 38–40, 2009.
[196]
R. M. Julien, A Primer of Drug Action, W. H. Freeman and Company, New York, NY, USA, 1998.
[197]
C. H. Hinkin, S. A. Castellon, D. J. Hardy, R. Farinpour, T. Newton, and E. Singer, “Methylphenidate improves HIV-1-associated cognitive slowing,” Journal of Neuropsychiatry and Clinical Neurosciences, vol. 13, no. 2, pp. 248–254, 2001.
[198]
J. R. Berger, M. Kumar, A. Kumar, J. B. Fernandez, and B. Levin, “Cerebrospinal fluid dopamine in HIV-1 infection,” AIDS, vol. 8, no. 1, pp. 67–71, 1994.
[199]
G. Charach, N. Kaysar, I. Grosskopf, A. Rabinovich, and M. Weintraub, “Methylphenidate has positive hypocholesterolemic and hypotrigylceridemic effects: new data,” Journal of Clinical Pharmacology, vol. 49, no. 7, pp. 848–851, 2009.
[200]
E. J. Wright, B. Grund, K. Robertson, et al., “Cardiovascular risk associated with lower baseline cognitive performance in HIV-positive persons,” Neurology, vol. 75, no. 10, pp. 864–873, 2010.
[201]
D. C. Turner, L. Clark, J. Dowson, T. W. Robbins, and B. J. Sahakian, “Modafinil improves cognition and response inhibition in adult attention-deficit/hyperactivity disorder,” Biological Psychiatry, vol. 55, no. 10, pp. 1031–1040, 2004.
[202]
M. McElhiney, J. Rabkin, W. Van Gorp, and R. Rabkin, “Modafinil effects on cognitive function in HIV+ patients treated for fatigue: a placebo controlled study,” Journal of Clinical and Experimental Neuropsychology, vol. 32, no. 5, pp. 474–480, 2010.
[203]
J. A. Yesavage, L. Friedman, J. W. Ashford et al., “Acetylcholinesterase inhibitor in combination with cognitive training in older adults,” Journals of Gerontology B8, vol. 63, no. 5, pp. P288–P294, 2008.
[204]
H. E. Gorby, A. M. Brownawell, and M. C. Falk, “Do specific dietary constituents and supplements affect mental energy? Review of the evidence,” Nutrition Reviews, vol. 68, no. 12, pp. 697–718, 2010.
[205]
M. J. Serby, S. J. Burns, and D. M. Roane, “Treatment of memory loss with herbal remedies,” Current Treatment Options in Neurology, vol. 13, no. 5, pp. 520–528, 2011.
[206]
B. E. Snitz, E. S. O'Meara, M. C. Carlson et al., “Ginkgo biloba for preventing cognitive decline in older adults a randomized trial,” Journal of the American Medical Association, vol. 302, no. 24, pp. 2663–2670, 2009.
[207]
M. J. Serby, C. Yhap, and E. Y. Landron, “A study of herbal remedies for memory complaints,” Journal of Neuropsychiatry and Clinical Neurosciences, vol. 22, no. 3, pp. 345–347, 2010.
[208]
D. W. Luchtman and C. Song, “Cognitive enhancement by omega-3 fatty acids from child-hood to old age: findings from animal and clinical studies,” Neuropharmacology, vol. 64, pp. 550–565, 2013.
[209]
E. Leblanc, B. Chan, and H. D. Nelson, Hormone Replacement Therapy and Cognition. U. S. Preventive Services Task Force Evidence Syntheses, Formerly Systematic Evidence Reviews, Agency for Healthcare Research and Quality, Rockville, Md, USA, 2002.
[210]
V. Sharma and P. Perros, “The management of hypogonadism in aging male patients,” Postgraduate Medicine, vol. 121, no. 1, pp. 113–121, 2009.
[211]
E. Hogervorst and S. Bandelow, “Sex steroids to maintain cognitive function in women after the menopause: a meta-analyses of treatment trials,” Maturitas, vol. 66, no. 1, pp. 56–71, 2010.
[212]
N. Mitsiades, D. Correa, C. P. Gross, A. Hurria, and S. F. Slovin, “Cognitive effects of hormonal therapy in older adults,” Seminars in Oncology, vol. 35, no. 6, pp. 569–581, 2008.
[213]
S. A. Shumaker, C. Legault, S. R. Rapp et al., “Estrogen plus progestin and the incidence of dementia and mild cognitive impairment in postmenopausal Women—the Women's Health Initiative Memory Study: a randomized controlled trial,” Journal of the American Medical Association, vol. 289, no. 20, pp. 2651–2662, 2003.
[214]
N. Bassil and J. E. Morley, “Late-life onset hypogonadism: a review,” Clinics in Geriatric Medicine, vol. 26, no. 2, pp. 197–222, 2010.
[215]
D. E. Vance, L. A. Ross, and C. A. Downs, “Self-reported cognitive ability and global cognitive performance in adults with HIV,” Journal of Neuroscience Nursing, vol. 40, no. 1, pp. 6–13, 2008.
[216]
M. F. Folstein, S. E. Folstein, and P. R. McHugh, “‘Mini mental state’. a practical method for grading the cognitive state of patients for the clinician,” Journal of Psychiatric Research, vol. 12, no. 3, pp. 189–198, 1975.
[217]
Z. Nasreddine, “Montreal Cognitive Assessment (MoCA): administration and scoring instructions,” 2012, http://www.mocatest.org/.
[218]
D. E. Broadbent, P. F. Cooper, P. FitzGerald, and K. R. Parkes, “The cognitive failures questionnaire (CFQ) and its correlates,” British Journal of Clinical Psychology, vol. 21, no. 1, pp. 1–16, 1982.
[219]
D. E. Vance, “A review of metacognition in aging with HIV,” Perceptual and Motor Skills, vol. 103, no. 3, pp. 693–696, 2006.
[220]
D. E. Vance, K. F. Farr, and T. Struzick, “Assessing the clinical value of cognitive appraisal in adults aging with HIV,” Journal of Gerontological Nursing, vol. 34, no. 1, pp. 36–41, 2008.
[221]
C. H. Hinkin, W. G. Van Gorp, P. Satz et al., “Actual versus self-reported cognitive dysfunction in HIV-1 infection: memory-metamemory dissociations,” Journal of Clinical and Experimental Neuropsychology, vol. 18, no. 3, pp. 431–443, 1996.
[222]
I. Mocchetti, A. Bachis, and V. Avdoshina, “Neurotoxicity of human immunodeficiency virus-1: viral proteins and axonal transport,” Neurotoxicity Research, vol. 21, no. 1, pp. 79–89, 2012.
[223]
J. Chmielewski and C. Hrycyna, “Tools for eradicating HIV in the brain: prodrug dimeric inhibitors of P-gp,” Therapeutic Delivery, vol. 3, no. 6, pp. 689–692, 2012.
[224]
H. Dou, C. B. Grotepas, J. M. McMillan et al., “Macrophage delivery of nanoformulated antiretroviral drug to the brain in a murine model of NeuroAIDS,” Journal of Immunology, vol. 183, no. 1, pp. 661–669, 2009.
[225]
H. L. Wong, N. Chattopadhyay, X. Y. Wu, and R. Bendayan, “Nanotechnology applications for improved delivery of antiretroviral drugs to the brain,” Advanced Drug Delivery Reviews, vol. 62, no. 4-5, pp. 503–517, 2010.
[226]
L. R. Hanson and W. H. Frey, “Strategies for intranasal delivery of therapeutics for the prevention and treatment of neuroAIDS,” Journal of Neuroimmune Pharmacology, vol. 2, no. 1, pp. 81–86, 2007.
[227]
D. E. Vance, “Olfactory and psychomotor symptoms in HIV and aging: potential precursors to cognitive loss,” Medical Science Monitor, vol. 13, no. 10, pp. 1–3, 2007.
[228]
D. E. Vance and J. Burrace Jr., “Chemosenory declines in older adults with HIV: identifying interventions,” Journal of Gerontological Nursing, vol. 32, no. 7, pp. 42–48, 2006.
[229]
S. Craft, L. D. Baker, T. J. Montine et al., “Intranasal insulin therapy for Alzheimer disease and amnestic mild cognitive impairment: a pilot clinical trial,” Archives of Neurology, vol. 69, no. 1, pp. 29–38, 2012.
[230]
S. L. Letendre, S. P. Woods, R. J. Ellis et al., “Lithium improves HIV-associated neurocognitive impairment,” AIDS, vol. 20, no. 14, pp. 1885–1888, 2006.
[231]
G. Schifitto, J. Zhong, D. Gill et al., “Lithium therapy for human immunodeficiency virus type 1-associated neurocognitive impairment,” Journal of NeuroVirology, vol. 15, no. 2, pp. 176–186, 2009.
[232]
T. H. Shepard, R. L. Brent, J. M. Friedman et al., “Update on new developments in the study of human teratogens,” Teratology, vol. 65, no. 4, pp. 153–161, 2002.
[233]
J. F. M. Wetzels, J. D. Van Bergeijk, A. J. Hoitsma, F. T. M. Huysmans, and R. A. P. Koene, “Triamterene increases lithium excretion in healthy subjects: evidence for lithium transport in the cortical collecting tubule,” Nephrology Dialysis Transplantation, vol. 4, no. 11, pp. 939–942, 1989.
[234]
G. Schifitto, B. A. Navia, C. T. Yiannoutsos, et al., “Memantine and HIV-associated cognitive impairment: a neuropsychological and proton magnetic resonance spectroscopy study,” AIDS, vol. 21, no. 14, pp. 1877–1886, 2007.
[235]
Y. Zhao, B. A. Navia, C. M. Marra et al., “Memantine for AIDS dementia complex: open-label report of actg 301,” HIV Clinical Trials, vol. 11, no. 1, pp. 59–67, 2010.
[236]
T. D. Marcotte, D. Lazzaretto, J. C. Scott et al., “Visual attention deficits are associated with driving accidents in cognitively-impaired HIV-infected individuals,” Journal of Clinical and Experimental Neuropsychology, vol. 28, no. 1, pp. 13–28, 2006.
[237]
K. Ball, J. D. Edwards, L. A. Ross, and G. McGwin Jr., “Cognitive training decreases motor vehicle collision involvement of older drivers,” Journal of the American Geriatrics Society, vol. 58, no. 11, pp. 2107–2113, 2010.
[238]
M. E. Berryhill and K. T. Jones, “tDCS selectively improves working memory in older adults with more education,” Neuroscience Letters, vol. 521, no. 2, pp. 148–151, 2012.