全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
ISRN Oncology  2014 

Sarcoma Excision and Pattern of Complicating Sensory Neuropathy

DOI: 10.1155/2014/168698

Full-Text   Cite this paper   Add to My Lib

Abstract:

A potential complication of sarcoma excision surgery is a sensory neurological dysfunction around the surgical scar. This study utilised both objective and subjective sensation assessment modalities, to evaluate 22 patients after sarcoma surgery, for a sensory deficit. 93% had an objective sensory deficit. Light touch is less likely to be damaged than pinprick sensation, and two-point discrimination is significantly reduced around the scar. Results also show that an increased scar size leads to an increased light touch and pinprick deficit and that two-point discriminatory ability around the scar improves as time after surgery elapses. 91% had a subjective deficit, most likely tingling or pain, and numbness was most probable with lower limb sarcomas. Results also demonstrated that there were no significant relationships between any specific subjective and objective deficits. In conclusion, sensory disturbance after sarcoma surgery is common and debilitating. Efforts to minimize scar length are paramount in the prevention of sensory deficit. Sensation may also recover to an extent; thus, sensory reeducation techniques must become an integral aspect of management plans. Finally to obtain a comprehensive assessment of sensory function, both objective and subjective assessment techniques must be utilised. 1. Introduction Sarcomas are rare mesenchymal malignancies originating in supportive/connective body tissues including muscle; neural, cartilaginous, vascular, and adipose tissue; and bone [1–6]. There are approximately 3200 sarcomas diagnosed in the UK each year [7]; they account for 1% of malignant neoplasms in adults and 10% in children [8]. Although sarcomas are infrequent neoplastic manifestations [9], they impact substantially on mortality (50% 5-year survival) [10, 11]. The majority (60%) of sarcomas originate peripherally, 15% affect the head/neck/external trunk, and the remainder are in the retroperitoneal abdomen [12]. In the 1970s, amputation was the cornerstone of sarcoma management. Presently, limb salvage surgery is often preferential [13]; this surgical modification along with contemporary furtherance in imaging, biomedical engineering, and the advent of adjuvant chemotherapy has greatly improved survival [12, 14, 15]. With improved survival rates, complications of sarcoma management afflict all aspects of a patient’s health for longer [16]. A frequently overlooked complication of sarcoma surgery is neurological (specifically sensory) impairment. As many as 73% of patients have developed a new subjective neural impairment after tumour

References

[1]  C. A. S. Arndt and W. M. Crist, “Common musculoskeletal tumors of childhood and adolescence,” The New England Journal of Medicine, vol. 341, no. 5, pp. 342–352, 1999.
[2]  A. Ferrari, G. Bisogno, A. Macaluso et al., “Soft-tissue sarcomas in children and adolescents with neurofibromatosis type 1,” Cancer, vol. 109, no. 7, pp. 1406–1412, 2007.
[3]  K. Almefty, S. Pravdenkova, B. O. Colli, O. Al-Mefty, and M. Gokden, “Chordoma and chondrosarcoma: similar, but quite different, skull base tumors,” Cancer, vol. 110, no. 11, pp. 2457–2467, 2007.
[4]  A. Carneiro, P.-O. Bendahl, J. Engellau et al., “A prognostic model for soft tissue sarcoma of the extremities and trunk wall based on size, vascular invasion, necrosis, and growth pattern,” Cancer, vol. 117, no. 6, pp. 1279–1287, 2011.
[5]  J. Golledge, C. Fisher, and P. H. Rhys-Evans, “Head and neck liposarcoma,” Cancer, vol. 76, no. 6, pp. 1051–1058, 1995.
[6]  V. O. Lewis, “What's new in musculoskeletal oncology,” Journal of Bone and Joint Surgery A, vol. 91, no. 6, pp. 1546–1556, 2009.
[7]  U. K. Sarcoma, “What is sarcoma?” http://www.sarcoma.org.uk/what-is-sarcoma.
[8]  B. Brockstein, “Management of sarcomas of the head and neck,” Current Oncology Reports, vol. 6, no. 4, pp. 321–327, 2004.
[9]  A. Jemal, R. Siegel, J. Xu, and E. Ward, “Cancer statistics, 2010,” CA: Cancer Journal for Clinicians, vol. 60, no. 5, pp. 277–300, 2010.
[10]  A. Bleyer, M. Montello, T. Budd, and S. Saxman, “National survival trends of young adults with sarcoma: lack of progress is associated with lack of clinical trial participation,” Cancer, vol. 103, no. 9, pp. 1891–1897, 2005.
[11]  http://cancerhelp.cancerresearchuk.org/type/sarcoma/treatment/statistics-and-outlook-for-soft-tissue-sarcoma#gen.
[12]  B. Kasper, A. D. Ho, and G. Egerer, “Is there an indication for high-dose chemotherapy in the treatment of bone and soft-tissue sarcoma?” Oncology, vol. 68, no. 2-3, pp. 115–121, 2005.
[13]  R. J. Grimer, “Surgical options for children with osteosarcoma,” The Lancet Oncology, vol. 6, no. 2, pp. 85–92, 2005.
[14]  S. S. Bielack, B. Kempf-Bielack, G. Delling et al., “Prognostic factors in high-grade osteosarcoma of the extremities or trunk: an analysis of 1,702 patients treated on neoadjuvant cooperative osteosarcoma study group protocols,” Journal of Clinical Oncology, vol. 20, no. 3, pp. 776–790, 2002.
[15]  R. M. Wilkins, J. W. Cullen, L. Odom et al., “Superior survival in treatment of primary nonmetastatic pediatric osteosarcoma of the extremity,” Annals of Surgical Oncology, vol. 10, no. 5, pp. 498–507, 2003.
[16]  R. Dozor, “The biopyschosocial model,” Journal of Family Practice, vol. 31, no. 4, p. 353, 1990.
[17]  M. J. Park, K. N. Seo, and H. J. Kang, “Neurological deficit after surgical enucleation of schwannomas of the upper limb,” Journal of Bone and Joint Surgery B, vol. 91, no. 11, pp. 1482–1486, 2009.
[18]  R. C. Sam, S. H. Silverman, and A. W. Bradbury, “Nerve injuries and varicose vein surgery,” European Journal of Vascular and Endovascular Surgery, vol. 27, no. 2, pp. 113–120, 2004.
[19]  C. Morrison and M. C. Dalsing, “Signs and symptoms of saphenous nerve injury after greater saphenous vein stripping: prevalence, severity, and relevance for modern practice,” Journal of Vascular Surgery, vol. 38, no. 5, pp. 886–890, 2003.
[20]  M. R. Moawad, Y. A. Masannat, A. Alhamdani, and C. P. Gibbons, “Nerve injury in lower limb vascular surgery,” Surgeon, vol. 6, no. 1, pp. 32–35, 2008.
[21]  J. R. Mendell and Z. Sahenk, “Painful sensory neuropathy,” The New England Journal of Medicine, vol. 348, no. 13, pp. 1243–1255, 2003.
[22]  A. Atrey, C. M. Gupte, and S. A. Corbett, “Review of successful litigation against english health trusts in the treatment of adults with orthopaedic pathology: clinical governance lessons learned,” Journal of Bone and Joint Surgery A, vol. 92, no. 18, pp. e36.1–e36.6, 2010.
[23]  R. P. Calfee, P. R. Manske, R. H. Gelberman, M. O. van Steyn, J. Steffen, and C. A. Goldfarb, “Clinical assessment of the ulnar nerve at the elbow: reliability of instability testing and the association of hypermobility with clinical symptoms,” Journal of Bone and Joint Surgery A, vol. 92, no. 17, pp. 2801–2808, 2010.
[24]  L. J. Poort, J. W. van Neck, and K. G. H. van der Wal, “Sensory testing of inferior alveolar nerve injuries: a review of methods used in prospective studies,” Journal of Oral and Maxillofacial Surgery, vol. 67, no. 2, pp. 292–300, 2009.
[25]  J. B. Wade, D. D. Price, R. M. Hamer, S. M. Schwartz, and R. P. Hart, “An emotional component analysis of chronic pain,” Pain, vol. 40, no. 3, pp. 303–310, 1990.
[26]  D. D. Price, F. M. Bush, S. Long, and S. W. Harkins, “A comparison of pain measurement characteristics of mechanical visual analogue and simple numerical rating scales,” Pain, vol. 56, no. 2, pp. 217–226, 1994.
[27]  J. Macleod, G. Douglas, F. Nicol, and C. Robertson, Macleod's Clinical Examination, Churchill Livingstone, 12th edition.
[28]  J. Bell-Krotoski, S. Weinstein, and C. Weinstein, “Testing sensibility, including touch-pressure, two-point discrimination, point localization, and vibration,” Journal of Hand Therapy, vol. 6, no. 2, pp. 114–123, 1993.
[29]  M. G. Burnett and E. L. Zager, “Pathophysiology of peripheral nerve injury: a brief review,” Neurosurg Focus, vol. 16, no. 5, article E1, 2004.
[30]  W. Magerl, P. N. Fuchs, R. A. Meyer, and R.-D. Treede, “Roles of capsaicin-insensitive nociceptors in cutaneous pain and secondary hyperalgesia,” Brain, vol. 124, no. 9, pp. 1754–1764, 2001.
[31]  T. Hansson and T. Brismar, “Loss of sensory discrimination after median nerve injury and activation in the primary somatosensory cortex on functional magnetic resonance imaging,” Journal of Neurosurgery, vol. 99, no. 1, pp. 100–105, 2003.
[32]  R. W. Van Boven and K. O. Johnson, “The limit of tactile spatial resolution in humans: grating orientation discrimination at the lip, tongue, and finger,” Neurology, vol. 44, no. 12, pp. 2361–2366, 1994.
[33]  G. Lundborg and B. Rosén, “The two-point discrimination test: time for a re-appraisal?” Journal of Hand Surgery, vol. 29, no. 5, pp. 418–422, 2004.
[34]  R. Birch, Surgical Disorders of the Peripheral Nerves, Springer, New York, NY, USA, 2nd edition.
[35]  J. C. Craig and K. O. Johnson, “The two-point threshold: not a measure of tactile spatial resolution,” Current Directions in Psychological Science, vol. 9, no. 1, pp. 29–32, 2000.
[36]  Y.-H. Kim, K.-S. Sohn, and J.-S. Kim, “Short-term results of primary total knee Arthroplasties Performed with a Mini-Incision or a Standard Incision,” Journal of Arthroplasty, vol. 21, no. 5, pp. 712–718, 2006.
[37]  L. D. Dorr, D. Thomas, W. T. Long, P. B. Polatin, and L. E. Sirianni, “Psychologic reasons for patients preferring minimally invasive total hip arthroplasty,” Clinical Orthopaedics and Related Research, no. 458, pp. 94–100, 2007.
[38]  V. S. Tung, B. Buchberg, H. Masoomi et al., “No visible scar (NVIS) colectomy: A new approach to minimal access surgery to the colon,” Surgical Innovation, vol. 18, no. 1, pp. 79–85, 2011.
[39]  J. B. Mulliken, G. F. Rogers, and J. J. Marler, “Circular excision of hemangioma and purse-string closure: the smallest possible scar,” Plastic and Reconstructive Surgery, vol. 109, no. 5, pp. 1544–1554, 2002.
[40]  A. Momeni, N. Torio-Padron, H. Bannasch, J. Borges, and G. B. Stark, “A new method for reducing postoperative complications and scar length in abdominoplasty,” Plastic and Reconstructive Surgery, vol. 121, no. 4, pp. 227e–228e, 2008.
[41]  K. M. Woodrow, G. D. Friedman, A. B. Siegelaub, and M. F. Collen, “Pain tolerance: differences according to age, sex and race,” Psychosomatic Medicine, vol. 34, no. 6, pp. 548–556, 1972.
[42]  M. D. Robinson and S. Shannon, “Rehabilitation of peripheral nerve injuries,” Physical Medicine and Rehabilitation Clinics of North America, vol. 13, no. 1, pp. 109–135, 2002.
[43]  A. L. Dellon, “Sensory recovery in replanted digits and transplanted toes: a review,” Journal of reconstructive microsurgery, vol. 2, no. 2, pp. 123–129, 1986.
[44]  C. Collin, J. Godbold, S. Hajdu, and M. Brennan, “Localized extremity soft tissue sarcoma: an analysis of factors affecting survival,” Journal of Clinical Oncology, vol. 5, no. 4, pp. 601–612, 1987.
[45]  C. F. Collin, C. Friedrich, J. Godbold, S. Hajdu, and M. F. Brennan, “Prognostic factors for local recurrence and survival in patients with localized extremity soft-tissue sarcoma,” Seminars in Surgical Oncology, vol. 4, no. 1, pp. 30–37, 1988.
[46]  R. J. Geer, J. Woodruff, E. S. Casper, and M. F. Brennan, “Management of small soft-tissue sarcoma of the extremity in adults,” Archives of Surgery, vol. 127, no. 11, pp. 1285–1289, 1992.
[47]  C. M. Pezzi, M. S. Rawlings Jr., J. J. Esgro, R. E. Pollock, and M. M. Romsdahl, “Prognostic factors in 227 patients with malignant fibrous histiocytoma,” Cancer, vol. 69, no. 8, pp. 2098–2103, 1992.
[48]  D. Kenshalo, The Skin Senses, Charles Thomas, Springfield, Ill, USA, 3rd edition, 1968.
[49]  M. Curatolo, S. Petersen-Felix, and L. Arendt-Nielsen, “Assessment of regional analgesia in clinical practice and research,” British Medical Bulletin, vol. 71, pp. 61–76, 2004.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413