Breast cancer survival has significantly improved over the past two decades. However, the diagnosis of breast cancer is lower and the mortality rate remains higher, in African American women (AA) compared to Caucasian-American women. The purpose of this investigation is to analyze postoperative events that may affect breast cancer survival. This is a retrospective analysis of prospectively collected data from The Brooklyn Hospital Center cancer registry from 1997 to 2010. Of the 1538 patients in the registry, 1226 are AA and 269 are Caucasian. The study was divided into two time periods, 1997–2004 (period A) and 2005–2010 (period B), in order to assess the effect of treatment outcomes on survival. During period A, 5-year survival probabilities of 75.37%, 74.53%, and 78.70% were seen among all patients, AA women and Caucasian women, respectively. These probabilities increased to 87.62%, 87.15% and 89.99% in period B. Improved survival in AA women may be attributed to the use of adjuvant chemotherapy, radiation, and hormonal therapy. Improved survival in Caucasian patients was attributed to the use of radiation therapy, as well as earlier detection resulting in more favorable tumor grades and pathological stages. 1. Introduction In the USA, breast cancer is the most commonly diagnosed malignancy in women. In 2010, it is estimated that approximately 200,000 women were newly diagnosed with breast cancer and, currently, 1 in 8 women will be diagnosed within their lifetimes [1]. The mortality picture and survival rate associated with breast cancer have been improving over the past two decades. These improvements have been reported to be related to early detection, adjuvant therapy, and radiation therapy [2–4]. However, despite overall improvement in survival, several reports indicate that African American (AA) females have poorer outcomes compared to Caucasian females [5]. Data from the National Cancer Institute’s Surveillance, Epidemiology, and End Results (SEER) program indicate that age-adjusted breast cancer incidence rates in African Americans are substantially lower than those from Caucasian women with 141 cases per 100?000 in Caucasian women and 122 in African Americans [6, 7]. Although the incidence may be lower in AAs, the mortality rate appears to be higher compared to Caucasian women [8–10]. Numerous studies have proposed several theories to account for the racial differences in survival. Epidemiologically, AA women are diagnosed at a more advanced stage [11], have tumor-related characteristics that are more commonly estrogen receptor negative, and
References
[1]
Breast Cancer Facts and Figures 2009-2010, American Cancer Society.
[2]
M. Kalager, T. Haldorsen, M. Bretthauer, G. Hoff, S. O. Thoresen, and H.-O. Adami, “Improved breast cancer survival following introduction of an organized mammography screening program among both screened and unscreened women: a population-based cohort study,” Breast Cancer Research, vol. 11, no. 4, article R44, 2009.
[3]
H. Shigematsu, H. Kawaguchi, Y. Nakamura et al., “Significant survival improvement of patients with recurrent breast cancer in the periods 2001–2008 vs. 1992–2000,” BMC Cancer, vol. 11, article 118, 2011.
[4]
B. D. Smith, B. G. Haffty, A. Hurria, D. H. Galusha, and C. P. Gross, “Postmastectomy radiation and survival in older women with breast cancer,” Journal of Clinical Oncology, vol. 24, no. 30, pp. 4901–4907, 2006.
[5]
L. Lepeak, A. Tevaarwerk, N. Jones, A. Williamson, J. Cetnar, and N. LoConte, “Persistence in breast cancer disparities between African Americans and whites in Wisconsin,” Wisconsin Medical Journal, vol. 110, no. 1, pp. 21–25, 2011.
[6]
N. Howlader, A. M. Noone, M. Krapcho et al., Eds., SEER Cancer Statistics Review, 1975–2008, National Cancer Institute, Bethesda, Md, USA, 2010.
[7]
R. T. Chlebowski, Z. Chen, G. L. Anderson et al., “Ethnicity and breast cancer: factors influencing differences in incidence and outcome,” Journal of the National Cancer Institute, vol. 97, no. 6, pp. 439–447, 2005.
[8]
L. A. Newman, J. Mason, D. Cote et al., “African-American ethnicity, socioeconomic status, and breast cancer survival: a meta-analysis of 14 studies involving over 10,000 African-American and 40,000 white American patients with carcinoma of the breast,” Cancer, vol. 94, no. 11, pp. 2844–2854, 2002.
[9]
S. Whitman, D. Ansell, J. Orsi, and T. Francois, “The racial disparity in breast cancer mortality,” Journal of Community Health, vol. 36, no. 4, pp. 588–596, 2011.
[10]
I. K. Komenaka, M. E. Martinez, R. E. Pennington Jr. et al., “Race and ethnicity and breast cancer outcomes in an underinsured population,” Journal of the National Cancer Institute, vol. 102, no. 15, pp. 1178–1187, 2010.
[11]
J. S. Haas, C. C. Earle, J. E. Orav, P. Brawarsky, B. A. Neville, and D. R. Williams, “Racial segregation and disparities in cancer stage for seniors,” Journal of General Internal Medicine, vol. 23, no. 5, pp. 699–705, 2008.
[12]
C. I. Li, K. E. Malone, and J. R. Daling, “Differences in breast cancer hormone receptor status and histology by race and ethnicity among women 50 years of age and older,” Cancer Epidemiology Biomarkers and Prevention, vol. 11, no. 7, pp. 601–607, 2002.
[13]
S. A. Joslyn, “Hormone receptors in breast cancer: racial differences in distribution and survival,” Breast Cancer Research and Treatment, vol. 73, no. 1, pp. 45–59, 2002.
[14]
R. M. Elledge, G. M. Clark, G. C. Chamness, and C. K. Osborne, “Tumor biologic factors and breast cancer prognosis among white, Hispanic, and black women in the United States,” Journal of the National Cancer Institute, vol. 86, no. 9, pp. 705–712, 1994.
[15]
L. P. Middleton, V. Chen, G. H. Perkins, V. Pinn, and D. Page, “Histopathology of breast cancer among African-American women,” Cancer, vol. 97, no. 1, pp. 253–257, 2003.
[16]
A. N. Trivedi, A. M. Zaslavsky, E. C. Schneider, and J. Z. Ayanian, “Trends in the quality of care and racial disparities in medicare managed care,” The New England Journal of Medicine, vol. 353, no. 7, pp. 692–700, 2005.
[17]
S. H. Kim, J. Ferrante, B. R. Won, and M. Hameed, “Barriers to adequate follow-up during adjuvant therapy may be important factors in the worse outcome for Black women after breast cancer treatment,” World Journal of Surgical Oncology, vol. 6, article 26, 2008.
[18]
C. M. Tammemagi, D. Nerenz, C. Neslund-Dudas, C. Feldkamp, and D. Nathanson, “Comorbidity and survival disparities among black and white patients with breast cancer,” Journal of the American Medical Association, vol. 294, no. 14, pp. 1765–1772, 2005.
[19]
M. Purdom, M. L. Cibull, T. D. Stratton et al., “Should histologic grade be incorporated into the TNM classification system for small (T1, T2) node-negative breast adenocarcinomas?” Pathology Research International, vol. 2011, Article ID 825627, 4 pages, 2011.
[20]
A. Nasir, D. T. Chen, M. Gruidl et al., “Novel molecular markers of malignancy in histologically normal and benign breast,” Pathology Research International, vol. 2011, Article ID 489064, 18 pages, 2011.
[21]
M. Kalager, T. Haldorsen, M. Bretthauer, G. Hoff, S. O. Thoresen, and H.-O. Adami, “Improved breast cancer survival following introduction of an organized mammography screening program among both screened and unscreened women: a population-based cohort study,” Breast Cancer Research, vol. 11, no. 4, article R44, 2009.
[22]
P. J. Klemi, I. Parvinen, L. Pylkk?nen et al., “Significant improvement in breast cancer survival through population-based mammography screening,” Breast, vol. 12, no. 5, pp. 308–313, 2003.
[23]
S. A. Adams, E. R. Smith, J. Hardin, I. Prabhu-Das, J. Fulton, and J. R. Hebert, “Racial differences in follow-up of abnormal mammography findings among economically disadvantaged women,” Cancer, vol. 115, no. 24, pp. 5788–5797, 2009.
[24]
L. K. Dunnwald, M. A. Rossing, and C. I. Li, “Hormone receptor status, tumor characteristics, and prognosis: a prospective cohort of breast cancer patients,” Breast Cancer Research, vol. 9, no. 1, article R6, 2007.
[25]
N. Bulut, S. Aksoy, O. Dizdar et al., “Demographic and clinico-pathological characteristics in patients with triple-negative and non-triple-negative breast cancer,” Medical Oncology, vol. 28, no. 1, pp. S75–S79, 2011.
[26]
E. R. Fisher, C. Kent Osborne, and W. L. McGuire, “Correlation of primary breast cancer histopathology and estrogen receptor content,” Breast Cancer Research and Treatment, vol. 1, no. 1, pp. 37–41, 1981.
[27]
P. V. Maynard, C. J. Davies, R. W. Blamey, C. W. Elston, J. Johnson, and K. Griffiths, “Relationship between oestrogen-receptor content and histological grade in human primary breast tumours,” British Journal of Cancer, vol. 38, no. 6, pp. 745–748, 1978.
[28]
T. C. Putti, D. M. Abd El-Rehim, E. A. Rakha et al., “Estrogen receptor-negative breast carcinomas: a review of morphology and immunophenotypical analysis,” Modern Pathology, vol. 18, no. 1, pp. 26–35, 2005.
[29]
E. A. Rakha, J. S. Reis-Filho, F. Baehner et al., “Breast cancer prognostic classification in the molecular era: the role of histological grade,” Breast Cancer Research, vol. 12, no. 4, article 207, 2010.
[30]
I. A. Olivotto, C. D. Bajdik, I. H. Plenderleith et al., “Adjuvant systemic therapy and survival after breast cancer,” The New England Journal of Medicine, vol. 330, no. 12, pp. 805–810, 1994.
[31]
S. K. Chia, C. H. Speers, Y. D'Yachkova et al., “The impact of new chemotherapeutic and hormone agents on survival in a population-based cohort of women with metastatic breast cancer,” Cancer, vol. 110, no. 5, pp. 973–979, 2007.
[32]
V. Vinh-Hung, T. Burzykowski, J. Van De Steene, G. Storme, and G. Soete, “Post-surgery radiation in early breast cancer: survival analysis of registry data,” Radiotherapy and Oncology, vol. 64, no. 3, pp. 281–290, 2002.
[33]
D. G. Kirsch, C. J. Ledezma, C. S. Mathews et al., “Survival after brain metastases from breast cancer in the trastuzumab era,” Journal of Clinical Oncology, vol. 23, no. 9, pp. 2114–2116, 2005.
[34]
H. Riahi Idrissi, C. Chargari, M. A. Bollet et al., “Concurrent whole-brain radiotherapy with trastuzumab for treatment of brain metastases in breast cancer patients: questions and answers—Institut Curie experience and revue of the literature,” Bulletin du Cancer, vol. 98, no. 4, pp. 425–432, 2011.
[35]
R. C. Burton, R. J. Bell, G. Thiagarajah, and C. Stevenson, “Adjuvant therapy, not mammographic screening, accounts for most of the observed breast cancer specific mortality reductions in Australian women since the national screening program began in 1991,” Breast Cancer Research and Treatment, vol. 131, no. 3, pp. 949–955, 2012.
[36]
P. Autier, M. Boniol, A. Gavin, and L. J. Vatten, “Breast cancer mortality in neighbouring European countries with different levels of screening but similar access to treatment: trend analysis of WHO mortality database,” British Medical Journal, vol. 343, p. d4411, 2011.
[37]
J. Hirschman, S. Whitman, and D. Ansell, “The black:white disparity in breast cancer mortality: the example of Chicago,” Cancer Causes and Control, vol. 18, no. 3, pp. 323–333, 2007.
[38]
G. J. Morris and E. P. Mitchell, “Higher incidence of aggressive breast cancers in African-American women: a review,” Journal of the National Medical Association, vol. 100, no. 6, pp. 698–702, 2008.
[39]
L. J. Short, M. D. Fisher, P. M. Wahl et al., “Disparities in medical care among commercially insured patients with newly diagnosed breast cancer: opportunities for intervention,” Cancer, vol. 116, no. 1, pp. 193–202, 2010.
[40]
N. Natarajan, T. Nemoto, C. Mettlin, and G. P. Murphy, “Race-related differences in breast cancer patients. Results of the 1982 national survey of breast cancer by the American College of Surgeons,” Cancer, vol. 56, no. 7, pp. 1704–1709, 1985.
[41]
L. A. Newman, K. A. Griffith, I. Jatoi, M. S. Simon, J. P. Crowe, and G. A. Colditz, “Meta-analysis of survival in African American and white American patients with breast cancer: ethnicity compared with socioeconomic status,” Journal of Clinical Oncology, vol. 24, no. 9, pp. 1342–1349, 2006.
[42]
A. D. Deshpande, D. B. Jeffe, J. Gnerlich, A. Z. Iqbal, A. Thummalakunta, and J. A. Margenthaler, “Racial disparities in breast cancer survival: an analysis by age and stage,” Journal of Surgical Research, vol. 153, no. 1, pp. 105–113, 2009.
[43]
2009 National Healthcare Quality Report from US department of Health and Human Services Office of Minority Health.
[44]
Gallup-Healthways Well-Being Index, 2011.
[45]
M. P. Cleary, M. E. Grossmann, and A. Ray, “Effect of obesity on breast cancer development,” Veterinary Pathology, vol. 47, no. 2, pp. 202–213, 2010.
[46]
A. R. Carmichael, “Obesity as a risk factor for development and poor prognosis of breast cancer,” International Journal of Obstetrics and Gynaecology, vol. 113, no. 10, pp. 1160–1166, 2006.
[47]
M. Ewertz, M. B. Jensen, K. á. Gunnarsdóttir et al., “Effect of obesity on prognosis after early-stage breast cancer,” Journal of Clinical Oncology, vol. 29, no. 1, pp. 25–31, 2011.
[48]
S. Loi, R. L. Milne, M. L. Friedlander et al., “Obesity and outcomes in premenopausal and postmenopausal breast cancer,” Cancer Epidemiology Biomarkers and Prevention, vol. 14, no. 7, pp. 1686–1691, 2005.
[49]
J. Tan, E. Buache, M.-P. Chenard, N. Dali-Youcef, and M.-C. Rio, “Adipocyte is a non-trivial, dynamic partner of breast cancer cells,” International Journal of Developmental Biology, vol. 55, no. 7–9, pp. 851–859, 2011.
[50]
F. A. Sinicrope and A. J. Dannenberg, “Obesity and breast cancer prognosis: weight of the evidence,” Journal of Clinical Oncology, vol. 29, no. 1, pp. 4–7, 2011.
[51]
J. D. Yager and N. E. Davidson, “Estrogen carcinogenesis in breast cancer,” The New England Journal of Medicine, vol. 354, no. 3, pp. 228–282, 2006.
[52]
J. B. Barnett, M. N. Woods, B. Rosner et al., “Sex hormone levels in premenopausal African-American women with upper and lower body fat phenotypes,” Nutrition and Cancer, vol. 41, no. 1-2, pp. 47–56, 2001.
[53]
M. Kacem, M. Awatef, L. Amel, M. Jihen, and B. A. Slim, “Effect of obesity at the pathologic response to neoadjuvant chemotherapy among premenopausal Tunisian women with breast cancer,” Obesity, 2010.
[54]
T. S?rlie, C. M. Perou, R. Tibshirani et al., “Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 19, pp. 10869–10874, 2001.
[55]
J. C. Sachdev, S. Ahmed, M. M. Mirza, A. Farooq, L. Kronish, and M. Jahanzeb, “Does race affect outcomes in triple negative breast cancer?” Breast Cancer: Basic and Clinical Research, vol. 4, no. 1, pp. 23–33, 2010.
[56]
L. A. Carey, C. M. Perou, C. A. Livasy et al., “Race, breast cancer subtypes, and survival in the Carolina Breast Cancer Study,” Journal of the American Medical Association, vol. 295, no. 21, pp. 2492–2502, 2006.
[57]
L. A. Stead, T. L. Lash, J. E. Sobieraj et al., “Triple-negative breast cancers are increased in black women regardless of age or body mass index,” Breast Cancer Research, vol. 11, no. 2, article R18, 2009.
[58]
R. Demicheli, M. W. Retsky, W. J. M. Hrushesky, M. Baum, I. D. Gukas, and I. Jatoi, “Racial disparities in breast cancer outcome: insights into host-tumor interactions,” Cancer, vol. 110, no. 9, pp. 1880–1888, 2007.
[59]
W. F. Anderson, I. Jatoi, and S. S. Devesa, “Distinct breast cancer incidence and prognostic patterns in the NCI's SEER program: suggesting a possible link between etiology and outcome,” Breast Cancer Research and Treatment, vol. 90, no. 2, pp. 127–137, 2005.
[60]
W. F. Anderson and R. Matsuno, “Breast cancer heterogeneity: a mixture of at least two main types?” Journal of the National Cancer Institute, vol. 98, no. 14, pp. 948–951, 2006.
[61]
M. J. Lund, M. Mosunjac, K. M. Davis et al., “21-Gene recurrence scores: racial differences in testing, scores, treatment, and outcome,” Cancer, vol. 118, no. 3, pp. 788–796, 2012.
[62]
A. V. Ivshina, J. George, O. Senko et al., “Genetic reclassification of histologic grade delineates new clinical subtypes of breast cancer,” Cancer Research, vol. 66, no. 21, pp. 10292–10301, 2006.