全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
ISRN Oncology  2014 

Magnitude and Implications of Interfraction Variations in Organ Doses during High Dose Rate Brachytherapy of Cervix Cancer: A CT Based Planning Study

DOI: 10.1155/2014/687365

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background. Quantifying the interfraction dose variations in the organs at risk (OAR) in HDR intracavitary brachytherapy (HDR ICBT). Methods. Rectum and bladder were contoured in 44 patients of cervical carcinoma on CT after each fraction of HDR ICBT (9?Gy/2 fractions). Interfraction dose variations (VARact) were calculated. Rigid image registration of consecutive fraction images allowed quantification of the hypothetical variation in dose (VARhypo) arising exclusively due to changes in applicator placement and geometry. VARhypo was regressed against the VARact to find out to what extent the applicator variation could explain the VARact in the OAR. The rest of the variation was assumed to be due to organ deformation. Results. The VARact in the dose to 2?cc of bladder and rectum were 1.46 and 1.16?Gy, respectively. Increased dose was seen in 16 and 23 patients in the subsequent fraction for bladder and rectum, respectively. Doses to OAR would have exceeded constraints in 16% patients if second fraction was not imaged. VARhypo explained 19% and 47% of the VARact observed for the bladder and rectum respectively. Conclusions. Significant interfraction variations in OAR doses can occur in HDR ICBT. Organ deformations are mostly responsible for this variation. 1. Background Intracavitary brachytherapy (ICBT) forms an integral part of management of cervical carcinoma. While high dose rate ICBT (HDR ICBT) has become popular due to its logistical advantages over low dose rate ICBT (LDR ICBT), it also necessitates dose fractionation in order to reduce normal tissue complications [1]. This results in inadvertent changes in the position/geometry of the applicator. In addition there are interfraction deformations in organs at risk (OAR) due to movement, shape changes, and variable filling of these hollow organs. These in turn result in organ dose variations, which have important implications in dose reporting. In the past several authors had described the interfraction variation in applicator geometry as well as that of the organ point doses using data from orthogonal radiographs [2–9]. Recent advances in technology have allowed the use of volumetric imaging in gynecological brachytherapy planning [10, 11]. As a result greater information is available on the volumetric doses received by these OAR themselves. Data from some of the recent series have highlighted the problem of interfraction dose variation in HDR brachytherapy using volumetric imaging modalities [12–14]. Interfraction variations in the doses to these OAR may arise as a consequence of changes in two

References

[1]  S. Nag, B. Erickson, B. Thomadsen, C. Orton, J. D. Demanes, and D. Petereit, “The American Brachytherapy Society recommendations for high-dose-rate brachytherapy for carcinoma of the cervix,” International Journal of Radiation Oncology Biology Physics, vol. 48, no. 1, pp. 201–211, 2000.
[2]  R. Y. Kim, J. T. Meyer, W. E. Plott et al., “Major geometric variations between multiple high-dose-rate applications of brachytherapy in cancer of the cervix: frequency and types of variation,” Radiology, vol. 195, no. 2, pp. 419–422, 1995.
[3]  R. R. Rutten, A. A. Lawyer, and P. Berner, “Dose variation due to differences in applicator placement used for intracavitary brachytherapy of cervical cancer,” Medical Dosimetry, vol. 23, no. 1, pp. 57–63, 1998.
[4]  H. T. Pham, Y. Chen, E. Rouby, R. A. Lustig, and P. E. Wallner, “Changes in high-dose-rate tandem and ovoid applicator positions during treatment in an unfixed brachytherapy system,” Radiology, vol. 206, no. 2, pp. 525–531, 1998.
[5]  J. Huerta Bahena, A. Martinez, D. Yan et al., “Spatial reproducibility of the ring and tandem high-dose rate cervix applicator,” International Journal of Radiation Oncology Biology Physics, vol. 41, no. 1, pp. 13–19, 1998.
[6]  N. R. Datta, S. Kumar, K. J. M. Das, C. M. Pandey, S. Halder, and S. Ayyagari, “Variations of intracavitary applicator geometry during multiple HDR brachytherapy insertions in carcinoma cervix and its influence on reporting as per ICRU report 38,” Radiotherapy and Oncology, vol. 60, no. 1, pp. 15–24, 2001.
[7]  N. D. Jones, J. Rankin, and D. K. Gaffney, “Is simulation necessary for each high-dose-rate tandem and ovoid insertion in carcinoma of the cervix?” Brachytherapy, vol. 3, no. 3, pp. 120–124, 2004.
[8]  M. Garipa?ao?lu, N. Tun?el, M. G. Dalmaz et al., “Changes in applicator positions and dose distribution between high dose rate brachytherapy fractions in cervix carcinoma patients receiving definitive radiotherapy,” British Journal of Radiology, vol. 79, no. 942, pp. 504–509, 2006.
[9]  C. Ebruli, A. N. Demiral, R. ?eting?z, F. Eyiler, and M. Kinay, “The variability of applicator position among high dose rate intracavitary brachytherapy applications in cervical cancer patients treated with ring & tandem applicators,” Tumori, vol. 93, no. 5, pp. 432–438, 2007.
[10]  T. P. Hellebust, K. Tanderup, E. S. Bergstrand, B. H. Knutsen, J. R?islien, and D. R. Olsen, “Reconstruction of a ring applicator using CT imaging: impact of the reconstruction method and applicator orientation,” Physics in Medicine and Biology, vol. 52, no. 16, article 012, pp. 4893–4904, 2007.
[11]  R. P?tter, C. Haie-Meder, E. Van Limbergen et al., “Recommendations from gynaecological (GYN) GEC ESTRO working group (II): concepts and terms in 3D image-based treatment planning in cervix cancer brachytherapy—3D dose volume parameters and aspects of 3D image-based anatomy, radiation physics, radiobiology,” Radiotherapy and Oncology, vol. 78, no. 1, pp. 67–77, 2006.
[12]  F. D. Patel, B. Rai, I. Mallick, and S. C. Sharma, “High-dose-rate brachytherapy in uterine cervical carcinoma,” International Journal of Radiation Oncology Biology Physics, vol. 62, no. 1, pp. 125–130, 2005.
[13]  M. T. M. Davidson, J. Yuen, D. P. D'Souza, and D. L. Batchelar, “Image-guided cervix high-dose-rate brachytherapy treatment planning: does custom computed tomography planning for each insertion provide better conformal avoidance of organs at risk?” Brachytherapy, vol. 7, no. 1, pp. 37–42, 2008.
[14]  C. Kirisits, S. Lang, J. Dimopoulos, K. Oechs, D. Georg, and R. P?tter, “Uncertainties when using only one MRI-based treatment plan for subsequent high-dose-rate tandem and ring applications in brachytherapy of cervix cancer,” Radiotherapy and Oncology, vol. 81, no. 3, pp. 269–275, 2006.
[15]  A. Polo, F. Cattani, A. Vavassori et al., “MR and CT image fusion for postimplant analysis in permanent prostate seed implants,” International Journal of Radiation Oncology Biology Physics, vol. 60, no. 5, pp. 1572–1579, 2004.
[16]  R. P?tter, C. Kirisits, E. F. Fidarova et al., “Present status and future of high-precision image guided adaptive brachytherapy for cervix carcinoma,” Acta Oncologica, vol. 47, no. 7, pp. 1325–1336, 2008.
[17]  L. Xiong, A. Viswanathan, A. J. Stewart et al., “Deformable structure registration of bladder through surface mapping,” Medical Physics, vol. 33, no. 6, pp. 1848–1856, 2006.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413