全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
ISRN Oncology  2013 

UGT2B17 Polymorphism and Risk of Prostate Cancer: A Meta-Analysis

DOI: 10.1155/2013/465916

Full-Text   Cite this paper   Add to My Lib

Abstract:

Objective. Recent studies on the association between uridine diphosphosglucuronosyltransferases (UGTs) 2B17 polymorphism and risk of prostate cancer (PCa) showed inconclusive results. To clarify this possible association, we conducted a meta-analysis of published studies. Methods. We searched the published literature from PubMed, Embase, Google Scholar, and China National Knowledge Infrastructure (CNKI). According to our inclusion criteria, studies that observed the association between UGT2B17 polymorphism and PCa risk were included. The principal outcome measure was the adjusted odds ratio (OR) with 95% confidence interval (CI) for the risk of PCa associated with UGT2B17 polymorphism. Results. A total of 6 studies with 7,029 subjects (3,839 cases and 3,190 controls) were eligible for inclusion in the meta-analysis. Overall, there was a significant association between UGT2B17 polymorphism and increased risk of prostate cancer ( , 95% CI 1.14–2.64, ). Similar results were found in the subgroup analyses by ethnicity and types of controls. Conclusion. This meta-analysis demonstrates that UGT2B17 polymorphism is associated with prostate cancer susceptibility, and it contributes to the increased risk of prostate cancer. 1. Introduction Prostate cancer is the fourth most common cancer in men, comprising approximately one-eighth of all male-specific cancers in the world [1]. Identifying risk factors for prostate cancer is critically important to develop potential interventions and to expand our understanding of the biology of this disease [2, 3]. The etiology of prostate cancer remains unknown, but race, age, family history of prostate cancer, and steroid hormone levels have been suggested as contributing factors [4]. The literature has revealed that eunuchs (men lacking testosterone) do not develop prostate cancer [5], generating the theory that testosterone plays a vital role in the development and progression of the disease. As a corollary, testis ablation is a well-established and effective way to stop progression of the disease [6]. Androgens, responsible for the healthy growth and maintenance of the prostate, are steroid hormones expressed in the prostate [7]. The two main types of androgens found in males, testosterone and dihydrotestosterone (DHT), have been postulated to modify the risk of prostate cancer [8, 9]. Most epidemiologic studies of prostate cancer have focused on the genes involved in the steroidogenic pathway, such as P450 cytochrome 3A4 (CYP3A4), CYP17, and SRD5A2. Although differences in androgen levels may also reflect variations in

References

[1]  J. D. Potter, Food, Nutrition and the Prevention of Cancer: A global Perspective, American Institute for Cancer Research, 1997.
[2]  J.-E. Damber and G. Aus, “Prostate cancer,” The Lancet, vol. 371, no. 9625, pp. 1710–1721, 2008.
[3]  L. M. Dong, J. D. Potter, E. White, C. M. Ulrich, L. R. Cardon, and U. Peters, “Genetic susceptibility to cancer: the role of polymorphisms in candidate genes,” Journal of the American Medical Association, vol. 299, no. 20, pp. 2423–2436, 2008.
[4]  H. Gr?nberg, “Prostate cancer epidemiology,” The Lancet, vol. 361, no. 9360, pp. 859–864, 2003.
[5]  M. B. Lipsett, “Estrogen use and cancer risk,” Journal of the American Medical Association, vol. 237, no. 11, pp. 1112–1115, 1977.
[6]  L. Denis and C. Mahler, “Prostatic cancer. An overview,” Acta Oncologica, vol. 29, no. 5, pp. 665–677, 1990.
[7]  A. W. Hsing and A. P. Chokkalingam, “Prostate cancer epidemiology,” Frontiers in Bioscience, vol. 11, no. 2, pp. 1388–1413, 2006.
[8]  G. Bélanger, M. Beaulieu, B. Marcotte et al., “Expression of transcripts encoding steroid UDP-glucuronosyltransferases in human prostate hyperplastic tissue and the LNCaP cell line,” Molecular and Cellular Endocrinology, vol. 113, no. 2, pp. 165–173, 1995.
[9]  R. Ross, L. Bernstein, and H. Judd, “Serum testosterone levels in healthy young black and white men,” Journal of the National Cancer Institute, vol. 76, no. 1, pp. 45–48, 1986.
[10]  T. Hajdinjak and B. Zagradi?nik, “Prostate cancer and polymorphism D85Y in gene for dihydrotestosterone degrading enzyme UGT2B15: frequency of DD homozygotes increases with Gleason score,” Prostate, vol. 59, no. 4, pp. 436–439, 2004.
[11]  A. Gsur, M. Preyer, G. Haidinger et al., “A polymorphism in the UDP-Glucuronosyltransferase 2B15 Gene (D85Y) is not associated with prostate cancer risk,” Cancer Epidemiology Biomarkers and Prevention, vol. 11, no. 5, pp. 497–498, 2002.
[12]  J. Park, L. Chen, K. Shade et al., “Asp85Tyr polymorphism in the UDP-glucuronosyltransferase (UGT) 2B15 gene and the risk of prostate cancer,” Journal of Urology, vol. 171, no. 6, pp. 2484–2488, 2004.
[13]  J. Park, L. Chen, L. Ratnashinge et al., “Deletion polymorphism of UDP-glucuronosyltransferase 2B17 and risk of prostate cancer in African American and Caucasian men,” Cancer Epidemiology Biomarkers and Prevention, vol. 15, no. 8, pp. 1473–1478, 2006.
[14]  A. W. Hsing, “Hormones and prostate cancer: what’s next?” Epidemiologic Reviews, vol. 23, pp. 42–58, 2001.
[15]  R. K. Ross, L. Bernstein, R. A. Lobo et al., “5-alpha-reductase activity and risk of prostate cancer among Japanese and US white and black males,” The Lancet, vol. 339, no. 8798, pp. 887–889, 1992.
[16]  D. P. Lookingbill, L. M. Demers, C. Wang, A. Leung, R. S. Rittmaster, and R. J. Santen, “Clinical and biochemical parameters of androgen action in normal healthy caucasian versus Chinese subjects,” Journal of Clinical Endocrinology and Metabolism, vol. 72, no. 6, pp. 1242–1248, 1991.
[17]  A. S. Whittemore, L. N. Kolonel, A. H. Wu et al., “Prostate cancer in relation to diet, physical activity, and body size in blacks, whites, and Asians in the United States and Canada,” Journal of the National Cancer Institute, vol. 87, no. 9, pp. 652–661, 1995.
[18]  D. W. Hum, A. Bélanger, é. Lévesque et al., “Characterization of UDP-glucuronosyltransferases active on steroid hormones,” Journal of Steroid Biochemistry and Molecular Biology, vol. 69, no. 1–6, pp. 413–423, 1999.
[19]  O. Barbier, H. Lapointe, M. El Alfy, D. W. Hum, and A. Bélanger, “Cellular localization of uridine diphosphoglucuronosyltransferase 2B enzymes in the human prostate by in situ hybridization and immunohistochemistry,” Journal of Clinical Endocrinology and Metabolism, vol. 85, no. 12, pp. 4819–4826, 2000.
[20]  D. Turgeon, J.-S. Carrier, E. Lévesque, D. W. Hum, and A. Bélanger, “Relative enzymatic activity, protein stability, and tissue distribution of human steroid-metabolizing UGT2B subfamily members,” Endocrinology, vol. 142, no. 2, pp. 778–787, 2001.
[21]  W. Wilson III, F. Pardo-Manuel de Villena, B. D. Lyn-Cook et al., “Characterization of a common deletion polymorphism of the UGT2B17 gene linked to UGT2B15,” Genomics, vol. 84, no. 4, pp. 707–714, 2004.
[22]  M. Murata, E. H. Warren, and S. R. Riddell, “A human minor histocompatibility antigen resulting from differential expression due to a gene deletion,” Journal of Experimental Medicine, vol. 197, no. 10, pp. 1279–1289, 2003.
[23]  S. R. Setlur, C. X. Chen, R. R. Hossain et al., “Genetic variation of genes involved in dihydrotestosterone metabolism and the risk of prostate cancer,” Cancer Epidemiology Biomarkers and Prevention, vol. 19, no. 1, pp. 229–239, 2010.
[24]  A.-H. Karypidis, M. Olsson, S.-O. Andersson, A. Rane, and L. Ekstr?m, “Deletion polymorphism of the UGT2B17 gene is associated with increased risk for prostate cancer and correlated to gene expression in the prostate,” The Pharmacogenomics Journal, vol. 8, no. 2, pp. 147–151, 2008.
[25]  M. Olsson, S. Lindstr?m, B. H?ggkvist et al., “The UGT2B17 gene deletion is not associated with prostate cancer risk,” Prostate, vol. 68, no. 5, pp. 571–575, 2008.
[26]  J. Y. Park, J.-P. Tanner, T. A. Sellers et al., “Association between polymorphisms in HSD3B1 and UGT2B17 and prostate cancer risk,” Urology, vol. 70, no. 2, pp. 374–379, 2007.
[27]  C. J. Gallagher, F. F. Kadlubar, J. E. Muscat, C. B. Ambrosone, N. P. Lang, and P. Lazarus, “The UGT2B17 gene deletion polymorphism and risk of prostate cancer. A case-control study in Caucasians,” Cancer Detection and Prevention, vol. 31, no. 4, pp. 310–315, 2007.
[28]  J. Park, L. Chen, L. Ratnashinge et al., “Deletion polymorphism of UDP-glucuronosyltransferase 2B17 and risk of prostate cancer in African American and Caucasian men,” Cancer Epidemiology Biomarkers and Prevention, vol. 15, no. 8, pp. 1473–1478, 2006.
[29]  N. Mantel and W. Haenszel, “Statistical aspects of the analysis of data from retrospective studies of disease,” Journal of the National Cancer Institute, vol. 22, no. 4, pp. 719–748, 1959.
[30]  R. DerSimonian and N. Laird, “Meta-analysis in clinical trials,” Controlled Clinical Trials, vol. 7, no. 3, pp. 177–188, 1986.
[31]  W. G. Cochran, “The combination of estimates from different experiments,” Biometrics, vol. 10, no. 1, pp. 101–129, 1954.
[32]  J. P. T. Higgins, S. G. Thompson, J. J. Deeks, and D. G. Altman, “Measuring inconsistency in meta-analyses,” British Medical Journal, vol. 327, no. 7414, pp. 557–560, 2003.
[33]  M. Egger, G. D. Smith, M. Schneider, and C. Minder, “Bias in meta-analysis detected by a simple, graphical test,” British Medical Journal, vol. 315, no. 7109, pp. 629–634, 1997.
[34]  G. Nadeau, J. Bellemare, é. Audet-Walsh et al., “Deletions of the androgen-metabolizing UGT2B genes have an effect on circulating steroid levels and biochemical recurrence after radical prostatectomy in localized prostate cancer,” Journal of Clinical Endocrinology and Metabolism, vol. 96, no. 9, pp. E1550–E1557, 2011.
[35]  V. Ménard, O. Eap, M. Harvey, C. Guillemette, and é. Lévesque, “Copy-Number Variations (CNVs) of the human sex steroid metabolizing genes UGT2B17 and UGT2B28 and their associations with a UGT2B15 functional polymorphism,” Human Mutation, vol. 30, no. 9, pp. 1310–1319, 2009.
[36]  D. G. Hu, D. Gardner-Stephen, G. Severi et al., “A novel polymorphism in a Forkhead Box A1 (FOXA1) binding site of the human UDP glucuronosyltransferase 2B17 gene modulates promoter activity and is associated with altered levels of circulating androstane-3α,17β-diol glucuronide,” Molecular Pharmacology, vol. 78, no. 4, pp. 714–722, 2010.
[37]  S. Chouinard, G. Pelletier, A. Bélanger, and O. Barbier, “Cellular specific expression of the androgen-conjugating enzymes UGT2B15 and UGT2B17 in the human prostate epithelium,” Endocrine Research, vol. 30, no. 4, pp. 717–725, 2004.
[38]  M. D. Green and T. R. Tephly, “Glucuronidation of amines and hydroxylated xenobiotics and endobiotics catalyzed by expressed human UGT1.4 protein,” Drug Metabolism and Disposition, vol. 24, no. 3, pp. 356–363, 1996.
[39]  P. H. Gann, C. H. Hennekens, J. Ma, C. Longcope, and M. J. Stampfer, “Prospective study of sex hormone levels and risk of prostate cancer,” Journal of the National Cancer Institute, vol. 88, no. 16, pp. 1118–1126, 1996.
[40]  L. Cai, W. Huang, and K.-C. Chou, “Prostate cancer with variants in CYP17 and UGT2B17 genes: a meta-analysis,” Protein and Peptide Letters, vol. 19, no. 1, pp. 62–69, 2012.
[41]  J. Jakobsson, L. Ekstr?m, N. Inotsume et al., “Large differences in testosterone excretion in Korean and Swedish men are strongly associated with a UDP-glucuronosyl transferase 2B17 polymorphism,” Journal of Clinical Endocrinology and Metabolism, vol. 91, no. 2, pp. 687–693, 2006.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413