全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
ISRN Oncology  2013 

Tumor Inhibition by DepoVax-Based Cancer Vaccine Is Accompanied by Reduced Regulatory/Suppressor Cell Proliferation and Tumor Infiltration

DOI: 10.1155/2013/753427

Full-Text   Cite this paper   Add to My Lib

Abstract:

A successful cancer vaccine needs to overcome the effects of immune-suppressor cells such as Treg lymphocytes, suppressive cytokine-secreting Tr1 cells, and myeloid-derived suppressor cells (MDSCs), while enhancing tumor-specific immune responses. Given the relative poor efficacy associated with current cancer vaccines, a novel vaccine platform called (DPX) was developed. C3 tumor-challenged mice were immunized with HPV-E7 peptide in DPX- or conventional-emulsion- (CE-) based vaccine. While control mice showed marked increase in Treg/MDSCs in spleen and blood, in mice treated with DPX-E7 the levels remained similar to tumor-free naive mice. Such differences were also seen within the tumor. Antigen-specific IL10-secreting CD4/CD8 T cells and TGF-β +CD8+ T cell frequencies were increased significantly in CE-treated and control mice in contrast to DPX-E7-immunized mice. Analysis of tumor-infiltrating cells revealed higher frequency of suppressor cells in untreated controls than in DPX-E7 group while the converse was true for tumor-infiltrating CD8 T cells. Immunization of tumor-bearing HLA-A2 transgenic mice with human vaccine DPX-0907, a peptide-based vaccine for breast/ovarian/prostate cancers, showed efficient induction of immune response to cancer peptides despite the presence of suppressor cells. Thus, this study provides the rationale for using DPX-based cancer vaccines in immune-suppressed cancer patients, to induce effective anticancer immunity. 1. Introduction Lack of effective cancer treatments and the emergence of drug resistance in progressively growing tumors make cancer immunotherapy a viable alternative to treat and manage metastatic diseases [1]. Synthetic peptide-based vaccines that are capable of inducing specific T cell-mediated immunity are emerging as attractive therapeutic strategies for cancers. While such vaccines have proven rather effective in diverse animal studies, multiple human clinical trials implementing this approach have thus far yielded limited success [2–5]. Although many of these trials were able to elicit significant number of tumor antigen-specific T cells in cancer patients, clinical regressions of disease remain rare [6]. Although incompletely understood, the lack of clinical efficacy for peptide-based vaccines may be related to several factors such as poor immunogenicity of the chosen peptides, insufficient numbers or appropriate functional polarity of responder T cells, inefficient trafficking of effector cells into tumor microenvironment, and, more importantly, tumor-induced increase in the number of

References

[1]  J. King, J. Waxman, and H. Stauss, “Advances in tumour immunotherapy,” QJM, vol. 101, no. 9, pp. 675–683, 2008.
[2]  O. J. Finn, “Molecular origins of cancer: cancer immunology,” The New England Journal of Medicine, vol. 358, no. 25, pp. 2704–2715, 2008.
[3]  S. Pejawar-Gaddy and O. J. Finn, “Cancer vaccines: accomplishments and challenges,” Critical Reviews in Oncology/Hematology, vol. 67, no. 2, pp. 93–102, 2008.
[4]  T. Sasada, N. Komatsu, S. Suekane, A. Yamada, M. Noguchi, and K. Itoh, “Overcoming the hurdles of randomised clinical trials of therapeutic cancer vaccines,” European Journal of Cancer, vol. 46, no. 9, pp. 1514–1519, 2010.
[5]  S. H. van der Burg, M. S. Bijker, M. J. P. Welters, R. Offringa, and C. J. M. Melief, “Improved peptide vaccine strategies, creating synthetic artificial infections to maximize immune efficacy,” Advanced Drug Delivery Reviews, vol. 58, no. 8, pp. 916–930, 2006.
[6]  S. A. Rosenberg, J. C. Yang, and N. P. Restifo, “Cancer immunotherapy: moving beyond current vaccines,” Nature Medicine, vol. 10, no. 9, pp. 909–915, 2004.
[7]  T. Lanca and B. Silva-Santos, “The split nature of tumor-infiltrating leukocytes: Implications for cancer surveillance and immunotherapy,” Oncoimmunology, vol. 1, no. 5, pp. 717–725, 2012.
[8]  M. Beyer and J. L. Schultze, “Regulatory T cells in cancer,” Blood, vol. 108, no. 3, pp. 804–811, 2006.
[9]  T. J. Curiel, “Regulatory T cells and treatment of cancer,” Current Opinion in Immunology, vol. 20, no. 2, pp. 241–246, 2008.
[10]  S. J. Piersma, M. J. P. Welters, and S. H. van der Burg, “Tumor-specific regulatory T cells in cancer patients,” Human Immunology, vol. 69, no. 4-5, pp. 241–249, 2008.
[11]  S. Nagaraj and D. I. Gabrilovich, “Tumor escape mechanism governed by myeloid-derived suppressor cells,” Cancer Research, vol. 68, no. 8, pp. 2561–2563, 2008.
[12]  S. Ostrand-Rosenberg and P. Sinha, “Myeloid-derived suppressor cells: linking inflammation and cancer,” Journal of Immunology, vol. 182, no. 8, pp. 4499–4506, 2009.
[13]  J. E. Talmadge, “Pathways mediating the expansion and immunosuppressive activity of myeloid-derived suppressor cells and their relevance to cancer therapy,” Clinical Cancer Research, vol. 13, no. 18, part 1, pp. 5243–5248, 2007.
[14]  G. Lizée, L. G. Radvanyi, W. W. Overwijk, and P. Hwu, “Improving antitumor immune responses by circumventing immunoregulatory cells and mechanisms,” Clinical Cancer Research, vol. 12, no. 16, pp. 4794–4803, 2006.
[15]  B. Liu, J. Nash, C. Runowicz, H. Swede, R. Stevens, and Z. Li, “Ovarian cancer immunotherapy: opportunities, progresses and challenges,” Journal of Hematology and Oncology, vol. 3, article 7, 2010.
[16]  F. Pagès, A. Berger, M. Camus et al., “Effector memory T cells, early metastasis, and survival in colorectal cancer,” The New England Journal of Medicine, vol. 353, no. 25, pp. 2654–2666, 2005.
[17]  P. Daftarian, M. Mansour, A. C. Benoit et al., “Eradication of established HPV 16-expressing tumors by a single administration of a vaccine composed of a liposome-encapsulated CTL-T helper fusion peptide in a water-in-oil emulsion,” Vaccine, vol. 24, no. 24, pp. 5235–5244, 2006.
[18]  P. M. Daftarian, M. Mansour, B. Pohajdak et al., “Rejection of large HPV-16 expressing tumors in aged mice by a single immunization of VacciMax encapsulated CTL/T helper peptides,” Journal of Translational Medicine, vol. 5, article 26, 2007.
[19]  M. Mansour, B. Pohajdak, W. M. Kast et al., “Therapy of established B16-F10 melanoma tumors by a single vaccination of CTL/T helper peptides in VacciMax,” Journal of Translational Medicine, vol. 5, article 20, 2007.
[20]  N. L. Berinstein, M. Karkada, M. A. Morse et al., “First-in-man application of a novel therapeutic cancer vaccine formulation with the capacity to induce multi-functional T cell responses in ovarian, breast and prostate cancer patients,” Journal of Translational Medicine, vol. 10, no. 1, article 156, 2012.
[21]  M. Karkada, G. M. Weir, T. Quinton et al., “A novel breast/ovarian cancer peptide vaccine platform that promotes specific type-1 but not treg/tr1-type responses,” Journal of Immunotherapy, vol. 33, no. 3, pp. 250–261, 2010.
[22]  V. Ramakrishna, M. M. Ross, M. Petersson et al., “Naturally occuring peptides associated with HLA-A2 in ovarian cancer cell lines identified by mass spectrometry are targets of HLA-A2-restricted cytotoxic T cells,” International Immunology, vol. 15, no. 6, pp. 751–763, 2003.
[23]  C. L. Slingluff Jr., G. Yamshchikov, P. Neese et al., “Phase I trial of a melanoma vaccine with gp100280-288 peptide and tetanus helper peptide in adjuvant: immunologic and clinical outcomes,” Clinical Cancer Research, vol. 7, no. 10, pp. 3012–3024, 2001.
[24]  R. Wang, Q. Wan, L. Kozhaya, H. Fujii, and D. Unutmaz, “Identification of a regulatory T cell specific cell surface molecule that mediates suppressive signals and induces Foxp3 expression,” PLoS One, vol. 3, no. 7, Article ID e2705, 2008.
[25]  V. Appay, D. C. Douek, and D. A. Price, “CD8+ T cell efficacy in vaccination and disease,” Nature Medicine, vol. 14, no. 6, pp. 623–628, 2008.
[26]  T. L. Whiteside, “The tumor microenvironment and its role in promoting tumor growth,” Oncogene, vol. 27, no. 45, pp. 5904–5912, 2008.
[27]  H. Kobayashi and E. Celis, “Peptide epitope identification for tumor-reactive CD4 T cells,” Current Opinion in Immunology, vol. 20, no. 2, pp. 221–227, 2008.
[28]  P. R. Dunbar, C. L. Smith, D. Chao et al., “A shift in the phenotype of melan-A-specific CTL identifies melanoma patients with an active tumor-specific immune response,” Journal of Immunology, vol. 165, no. 11, pp. 6644–6652, 2000.
[29]  E. Sato, S. H. Olson, J. Ahn et al., “Intraepithelial CD8+ tumor-infiltrating lymphocytes and a high CD8+/regulatory T cell ratio are associated with favorable prognosis in ovarian cancer,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 51, pp. 18538–18543, 2005.
[30]  F. S. Hodi, S. J. O'Day, D. F. McDermott et al., “Improved survival with ipilimumab in patients with metastatic melanoma,” The New England Journal of Medicine, vol. 363, no. 8, pp. 711–723, 2010.
[31]  L. Vence, A. K. Palucka, J. W. Fay et al., “Circulating tumor antigen-specific regulatory T cells in patients with metastatic melanoma,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 52, pp. 20884–20889, 2007.
[32]  H. Y. Wang, D. A. Lee, G. Peng et al., “Tumor-specific human CD4+ regulatory T cells and their ligands: implications for immunotherapy,” Immunity, vol. 20, no. 1, pp. 107–118, 2004.
[33]  G. Zhou, C. G. Drake, and H. I. Levitsky, “Amplification of tumor-specific regulatory T cells following therapeutic cancer vaccines,” Blood, vol. 107, no. 2, pp. 628–636, 2006.
[34]  S. H. van der Burg, S. J. Piersma, A. de Jong et al., “Association of cervical cancer with the presence of CD4+ regulatory T cells specific for human papillomavirus antigens,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 29, pp. 12087–12092, 2007.
[35]  M. J. P. Welters, G. G. Kenter, S. J. Piersma et al., “Induction of tumor-specific CD4+ and CD8+ T-cell immunity in cervical cancer patients by a human papillomavirus type 16 E6 and E7 long peptides vaccine,” Clinical Cancer Research, vol. 14, no. 1, pp. 178–187, 2008.
[36]  L. Dolcetti, E. Peranzoni, S. Ugel et al., “Hierarchy of immunosuppressive strength among myeloid-derived suppressor cell subsets is determined by GM-CSF,” European Journal of Immunology, vol. 40, no. 1, pp. 22–35, 2010.
[37]  D. Q. Tran, J. Andersson, R. Wang, H. Ramsey, D. Unutmaz, and E. M. Shevach, “GARP (LRRC32) is essential for the surface expression of latent TGF-β on platelets and activated FOXP3+ regulatory T cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 32, pp. 13445–13450, 2009.
[38]  J. M. Haverkamp, S. A. Crist, B. D. Elzey, C. Cimen, and T. L. Ratliff, “In vivo suppressive function of myeloid-derived suppressor cells is limited to the inflammatory site,” European Journal of Immunology, vol. 41, no. 3, pp. 749–759, 2011.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133