全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Pricing and Lot Sizing for Seasonal Products in Price Sensitive Environment

DOI: 10.1155/2013/631427

Full-Text   Cite this paper   Add to My Lib

Abstract:

Some seasonal products have limited sales season, and the demand of such products over the sales season is of increasing-steady-decreasing type. Customers are highly sensitive to the prices of the products. In such situation, adjustment of unit selling price is needed to accelerate inventory depletion rate and for determining order quantity for the sales season. In this paper, we focus on the issue by jointly determining optimal unit selling prices and optimal lot size over the sales season. Unlike the conventional inventory models with pricing strategy, which were restricted to prespecified pricing cycle lengths, that is, fixed number of price changes over the time horizon, we allow the number of price changes to be a decision variable. The mathematical model is developed and existence of optimal solution is verified. A solution procedure is developed to determine optimal prices, optimal number of pricing cycles, and optimal lot size. The model is illustrated by a numerical example. Sensitivity analysis of the model is also carried out. 1. Introduction Items like fashion apparel, hi-tech product parts, periodicals, Christmas accessories, and so forth, have limited sales season and become outdated at end of season. Demand of such products is sensitive to time as well as price. Initially after introduction of the product, demand increases up to a point of time then it becomes steady. Finally towards end the of the season, it decreases. Ramp-type time-dependent demand pattern is very close to the demand pattern in such situations. The inventory model with ramp-type demand rate was first proposed by Hill [1]. Since then many researchers and practitioners have given considerable attention to analyze ramp-type demand. Mandal and Pal [2] have extended the inventory model with ramp-type demand for exponentially deteriorating items by allowing shortages. Wu and Ouyang [3] have developed an inventory model by considering two different replenishment policies: shortage followed by inventory and inventory followed by shortage. Wu [4] has further proposed an inventory model for deteriorating items with ramp-type demand, Weibull distribution deteriorating rate, and waiting time-dependent partial backlogging rate. Giri et al. [5] have extended ramp-type demand inventory model with more general Weibull distribution deterioration rate. Manna and Chaudhuri [6] have developed a production inventory model with ramp-type two time periods classified demand pattern where the finite production rate depends on demand. Deng et al. [7] have pointed out the questionable results

References

[1]  R. M. Hill, “Inventory models for increasing demand followed by level demand,” Journal of the Operational Research Society, vol. 46, no. 10, pp. 1250–1259, 1995.
[2]  B. Mandal and A. K. Pal, “Order level inventory system with ramp type demand rate for deteriorating items,” Journal of Interdisciplinary Mathematics, vol. 1, pp. 49–66, 1998.
[3]  K. S. Wu and L. Y. Ouyang, “A replenishment policy for deteriorating items with ramp type demand rate,” Proceedings of the National Science Council, Republic of China A, vol. 24, no. 4, pp. 279–286, 2000.
[4]  K. S. Wu, “An EOQ inventory model for items with Weibull distribution deterioration, ramp type demand rate and partial backlogging,” Production Planning and Control, vol. 12, no. 8, pp. 787–793, 2001.
[5]  B. C. Giri, A. K. Jalan, and K. S. Chaudhuri, “Economic Order Quantity model with Weibull deterioration distribution, shortage and ramp-type demand,” International Journal of Systems Science, vol. 34, no. 4, pp. 237–243, 2003.
[6]  S. K. Manna and K. S. Chaudhuri, “An EOQ model with ramp type demand rate, time dependent deterioration rate, unit production cost and shortages,” European Journal of Operational Research, vol. 171, no. 2, pp. 557–566, 2006.
[7]  P. S. Deng, R. H. J. Lin, and P. Chu, “A note on the inventory models for deteriorating items with ramp type demand rate,” European Journal of Operational Research, vol. 178, no. 1, pp. 112–120, 2007.
[8]  S. Panda, S. Saha, and M. Basu, “An EOQ model with generalized ramp-type demand and weibull distribution deterioration,” Asia-Pacific Journal of Operational Research, vol. 24, no. 1, pp. 93–109, 2007.
[9]  S. Panda, S. Senapati, and M. Basu, “Optimal replenishment policy for perishable seasonal products in a season with ramp-type time dependent demand,” Computers and Industrial Engineering, vol. 54, no. 2, pp. 301–314, 2008.
[10]  M. Cheng and G. Wang, “A note on the inventory model for deteriorating items with trapezoidal type demand rate,” Computers and Industrial Engineering, vol. 56, no. 4, pp. 1296–1300, 2009.
[11]  S. Panda, S. Saha, and M. Basu, “Optimal production stopping time for perishable products with ramp-type quadratic demand dependent production and setup cost,” Central European Journal of Operations Research, vol. 17, no. 4, pp. 381–396, 2009.
[12]  K. Skouri, I. Konstantaras, S. Papachristos, and I. Ganas, “Inventory models with ramp type demand rate, partial backlogging and Weibull deterioration rate,” European Journal of Operational Research, vol. 192, no. 1, pp. 79–92, 2009.
[13]  K. C. Hung, “An inventory model with generalized type demand, deterioration and backorder rates,” European Journal of Operational Research, vol. 208, no. 3, pp. 239–242, 2011.
[14]  S. Saha and M. Basu, “Integrated dynamic pricing for seasonal products with price and time dependent demand,” Asia-Pacific Journal of Operational Research, vol. 27, no. 3, pp. 1–17, 2010.
[15]  P. Kotler and G. Armstrong, Principles of Marketing, Prentics-Hall of India, 2007.
[16]  T. L. Urban and R. C. Baker, “Optimal ordering and pricing policies in a single-period environment with multivariate demand and markdowns,” European Journal of Operational Research, vol. 103, no. 3, pp. 573–583, 1997.
[17]  S. W. Shinn and H. Hwang, “Optimal pricing and ordering policies for retailers under order-size-dependent delay in payments,” Computers and Operations Research, vol. 30, no. 1, pp. 35–50, 2003.
[18]  D. S. Dave, K. E. Fitzpatrick, and J. R. Baker, “An advertising-inclusive production lot size model under continuous discount pricing,” Computers and Industrial Engineering, vol. 30, no. 1, pp. 147–159, 1996.
[19]  N. H. Shah and Y. K. Shah, “An EOQ model for exponentially decaying inventory under temporary price discounts,” Cahiers du CERO, vol. 35, pp. 227–232, 1993.
[20]  H. M. Wee and S. T. Law, “Replenishment and pricing policy for deteriorating items taking into account the time-value of money,” International Journal of Production Economics, vol. 71, no. 1–3, pp. 213–220, 2001.
[21]  M. J. Khouja, “Optimal ordering, discounting, and pricing in the single-period problem,” International Journal of Production Economics, vol. 65, no. 2, pp. 201–216, 2000.
[22]  C. C. Wu, C. Y. Chou, and C. Huang, “Optimal price, warranty length and production rate for free replacement policy in the static demand market,” Omega, vol. 37, no. 1, pp. 29–39, 2009.
[23]  S. Transchel and S. Minner, “The impact of dynamic pricing on the economic order decision,” European Journal of Operational Research, vol. 198, no. 3, pp. 773–789, 2009.
[24]  S. Netessine, “Dynamic pricing of inventory/capacity with infrequent price changes,” European Journal of Operational Research, vol. 174, no. 1, pp. 553–580, 2006.
[25]  E. Adida and G. Perakis, “A nonlinear continuous time optimal control model of dynamic pricing and inventory control with no backorders,” Naval Research Logistics, vol. 54, no. 7, pp. 767–795, 2007.
[26]  W. Elmaghraby and P. Keskinocak, “Dynamic pricing in the presence of inventory considerations: research overview, current practices, and future directions,” Management Science, vol. 49, no. 10, pp. 1287–1309, 2003.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413