The reaction mechanisms of the oxidation of 1,2-diphenylhydrazine by iodine have been examined using semiempirical and density functional theory methods, the oxidation proceeded via two independent pathways that can be separately monitored. One pathway involved the chain multistep mechanism. The other pathway occurred via a one-step mechanism in which a “cyclic” activated complex was formed which on disproportionation gave the products. The one-step “cyclic” activated complex mechanism proceeds more rapidly than the chain multistep mechanism. The results were explained by analyses based on computational energetics of the optimised reactants, intermediates, transition states, and products of the reaction of iodine with 1,2-diphenylhydrazine. 1. Introduction 1,2-Diphenylhydrazine is used as an antisludging additive to motor oil, a desuckering agent for tobacco plants, a reductant in the reclamation of rubber, a component of experimental organometallic polymers, an ingredient in photochromic resin compositions, and a component in polymerization reactions [1, 2]. It is also used in the manufacture of hydrogen peroxide [1, 2]. Some 1,2-diphenylhydrazine derivatives are used as flame-retardant agents [3]. Several aryl hydrazine interactions in small molecule complexes have been studied to see how they might react with iron and other substances [4]. Some of the studies found that a 3?mM solution of benzene completely disproportionate 6 equivalents of 1,2-diphenylhydrazine into aniline and azobenzene. The effort of study to shift the chemistry in a different direction was only partially successful. Several others [5–9] have also reported that the reactions of 1,2-diphenylhydrazine and its derivatives were pH dependent and would yield different products depending on the PH of the reaction medium. These studies [4–9] concluded that 1,2-diphenylhydrazine and its derivatives enjoy complicated chemistries that include structural rearrangement and disproportionation and that their interactions with metal ions or inorganic substances are complex and incompletely understood. Although 1,2-diphenylhydrazine is known to be oxidized readily by many oxidants [10–17], only in a few other cases have the reaction mechanisms been examined, especially its reaction mechanisms with iodine [14]. It is also noteworthy to state that the various mechanisms proposed were not conclusive and needed to be revisited. Iodine, on the other hand, is an essential component of the human diet, and in fact, appears to be the heaviest required element in a diet. Iodine compounds are useful in
References
[1]
T. J. Kelly, R. Mukund, C. W. Spicer, and A. J. Pollack, “Concentrations and trapsformations of hazardous air pollutants,” Environmental Science and Technology, vol. 28, no. 8, pp. 378A–387A, 1994.
[2]
IPCS, International Chemical Safety Card for 1,2-Diphenylhydrazine, International Programme for Chemical Safety WHO, Geneva, Switzerland, 1993.
[3]
S. Ohnishi, M. Murata, S. Oikawa, Y. Hiraku, and S. Kawanishi, “Copper-dependent DNA damage induced by hydrazobenzene, an azobenzene metabolite,” Free Radical Research, vol. 32, no. 6, pp. 469–478, 2000.
[4]
M. J. Zdilla, A. K. Verma, and S. C. Lee, “Reactivity of a sterically hindered Fe(II) thiolate dimer with amines and hydrazines,” Inorganic Chemistry, vol. 47, no. 23, pp. 11382–11390, 2008.
[5]
S. Globig and K. J. Freundt, “Metabolism of hydrazobenzene in rat liver homogenate, Autumn Meeting of the Deutsche Gesellschaft Fuer Experimentelle Und Klinische PharmakologieUnd Toxikologie (German Society for Experimental and Clinical Pharmacology and Toxicology), Dresden, Germany, September 10-12, 1996,” Naunyn-Schmiedeberg's Archives of Pharmacology, vol. 354, no. 4, supplement 1, article R28, 1996.
[6]
S. Globig, M. Killguss, and K. J. Freundt, “Metabolism of hydraobenzene and azobenzene in rat hepatocytes in primary culture, Autumn Meeting of the Deutsche Gesellschaft Fuer Experimentelle Und Klinische Pharmakologie Und Toxikologie (German Society for Experimental and Clinical Pharmacology and Toxicology), Dresden, Germany, September 10-12, 1996,” Naunyn-Schmiedeberg's Archives of Pharmacology, vol. 354, no. 4, supplement 1, article R419, 1996.
[7]
A. Assi, S. Globig, and C. Koelbel, “Ph-dependent reaction types of hydrazobenzene in gastric juice and hydrous solution, 37th Spring Meeting of the German Society for Experimental and Clinical Pharmacology and Toxicology, Mainz, Germany, March 12-14, 1996,” Naunyn-Schmiedeberg's Archives of Pharmacology, vol. 353, no. 4 supplement, article R112, 1996.
[8]
M. S. Khalil, N. Kelada, B. Sawyer, D. R. Zenz, P. Tata, and C. Lue-Hing, “Comparison of one-step acidic extraction versus two-step basic and acidic extraction procedures for semivolatile analysis of wastewater,” Water Environment Research, vol. 71, no. 3, pp. 348–354, 1999.
[9]
R. B. Homer, R. D. Cannon, and S. S. B. Kim, “The oxidation of hydrazobenzene by oxygen catalyzed by CO(2MeOsalen) in methanol,” Bulletin of the Korean Chemical Society, vol. 6, no. 2, pp. 115–118, 1985.
[10]
K. Ayub and T. Mahmood, “DFT studies of halogen bonding abilities of nitrobenzene with halogens and chlorofluorocarbons,” Journal of Chemical Society of Pakistan, vol. 35, no. 3, pp. 617–821, 2013.
[11]
J. W. May and J. Halpern, “Kinetics of the oxidation of hydrazobenzeneby iodine and triiodide,” Canadian Journal of Chemistry, vol. 39, no. 6, pp. 1377–1385, 1961.
[12]
B. J. P. Whalley, H. G. V. Evans, and C. A. Winkler, “The oxidation of hydrazobenzene by ammonium persulphate in acetonitrile-water solution,” Canadian Journal of Chemistry, vol. 34, no. 9, pp. 1154–1162, 1956.
[13]
W. J. Zubyk, Dissertation [Ph.D. thesis], University of Delaware, 1957.
[14]
K. J. Blackmore, N. Lal, J. W. Ziller, and A. F. Heyduk, “Catalytic reactivity of a zirconium(IV) redox-active ligand complex with 1,2-diphenylhydrazine,” Journal of the American Chemical Society, vol. 130, no. 9, pp. 2728–2729, 2008.
[15]
R. A. Zarkesh, J. W. Ziller, and A. F. Heyduk, “Four-electron oxidative formation of aryl diazenes using a tantalum redox-active ligand complex,” Angewandte Chemie—International Edition, vol. 47, no. 25, pp. 4715–4718, 2008.
[16]
T. X. T. Luu, P. Christensen, F. Duus, and T. N. Le, “Inorganic salt supported potassium permanganate promoted oxidation of aniline into azobenzene,” Journal of Chemistry, vol. 45, pp. 105–1110, 2007.
[17]
J. W. Ochterski, “Thermochemistry in Gaussian,” Technical Support Information, gaussian.com, pp. 1-19, 2000.
[18]
X.-Y. Cao, X.-M. Jiang, A. Kareem et al., “Iodination of irrigation water as a method of supplying iodine to a severely iodine-deficient population in Xinjiang, China,” The Lancet, vol. 344, no. 8915, pp. 107–110, 1994.
[19]
S. M. Sultan, I. Z. Alzamil, A. M. Al-Hajjaji, S. A. Al-Tamrah, and A. M. A. Al-Rahman, “A kinetic study on the determination of hydrazine by iodine in sulphuric acid media,” Journal of Chemical Society of Pakistan, vol. 7, no. 2, pp. 93–99, 1985.
[20]
K. J. Laidler, Physical Chemistry with Biological Applications, The Benjamin Cumming, San Francisco, Calif, USA, 1978.
[21]
T. S. Rao and P. S. Dalvi, “Kinetics and mechanism of the rapid oxidation of hydrazine by iodine in weakly acidic solutions,” Proceeding Indian National Science Academy, vol. 56, no. 2, pp. 153–160, 1990.
[22]
I. A. Funai and M. A. Blesa, “Kinetics and mechanism of the reaction of iodine with isonicotinoylhydrazide,” Canadian Journal of Chemistry, vol. 62, no. 12, pp. 2923–2928, 1984.
[23]
M. S. Mshelia, F. Iyun, A. Uzairu, and S. Idris, “Kinetics and mechanism of the oxidation of hydrazine dihydrochloride by aqueous iodine,” Journal of American Science, vol. 6, no. 9, pp. 293–296, 2010.
[24]
K. Mitteilung, “Kinetics of reaction between hydrazine and iodine solution,” Zeitschrift für Physikalische Chemie Nexie Folge, vol. 45, no. 5-6, pp. 378–382, 1965.
[25]
S. E. King, J. N. Cooper, and R. D. Crawford, “Oxidation of hydrazine by iodine in aqueous perchloric acid,” Inorganic Chemistry, vol. 17, no. 11, pp. 3306–3307, 1978.
[26]
D. A. Palmer and M. H. Lietzke, “The equilibria and kinetics of iodine hydrolysis,” Radiochim Acta, vol. 31, pp. 37–44, 1982.
[27]
R. M. Smith and A. E. Martell, Critical Stability Constant, vol. 4, Plenum Press, New York, NY, USA, 1976.
[28]
P. Bhatnagar, R. K. Mittal, and Y. K. Gupta, “Stoicheiometry, kinetics, and mechanism of the oxidation of hyponitrous acid by iodine in acetate buffers,” Journal of the Chemical Society, Dalton Transactions, no. 12, pp. 3669–3673, 1990.
[29]
A. Mondal and R. Banerjee, “Kinetics and mechanism of uncatalyzed oxidation of hydrazine with superoxide coordinated to cobalt(III),” Indian Journal of Chemistry A, vol. 48, no. 5, pp. 645–649, 2009.
[30]
D. C. Young, “Semi empirical methods,” in Computational Chemistry: A Practical Guide for Applying Techniques to Real World Problems, John Wiley & Sons, New York, NY, USA, 2002.
[31]
Spartan User's Guide, version 3. 0, Wavefunction, 1993.
[32]
K. Kahn and T. C. Bruice, “Transition-state and ground-state structures and their interaction with the active-site residues in catechol O-methyltransferase,” Journal of the American Chemical Society, vol. 122, no. 1, pp. 46–51, 2000.
[33]
K. Kahn and P. A. Tipton, “Kinetics and mechanism of allantoin racemization,” Bioorganic Chemistry, vol. 28, no. 2, pp. 62–72, 2000.
[34]
K. Kahn, “Theoretical study of intermediates in the urate oxidase reaction,” Bioorganic Chemistry, vol. 27, no. 5, pp. 351–362, 1999.
[35]
J. J. P. Stewart, “Optimization of parameters for semiempirical methods V: modification of NDDO approximations and application to 70 elements,” Journal of Molecular Modeling, vol. 13, no. 12, pp. 1173–1213, 2007.
[36]
J. Marten, W. Seichter, E. Weber, and U. B?hme, “Crystalline packings of diketoarylhydrazones controlled by a methyl for trifluoromethyl structural change,” CrystEngComm, vol. 10, no. 5, pp. 541–547, 2008.
[37]
J. Zhang and W. L. Hase, “Electronic structure theory study of the F? + CH3I → FCH3 + I? Potential Energy Surface,” The Journal of Physical Chemistry A, vol. 114, no. 36, pp. 9635–9643, 2010.
[38]
F. Jensen, Introduction to Computational Chemistry, John Wiley & Sons, Chichester, UK, 1999.
[39]
J. Castells, F. Geijo, and F. López-Calahorra, “The “formoin reaction” : a promising entry to carbohydrates from formaldehyde,” Tetrahedron Letters, vol. 21, no. 47, pp. 4517–4520, 1980.
[40]
F. Jordan, “Theoretical studies on thiamin action, conformation of 2-1—hydroxethylthiamine,” Journal of American Chemical Society, vol. 98, pp. 808–813, 1976.
[41]
W. Shin, D.-G. Oh, C.-H. Chae, and T.-S. Yoon, “Conformational analyses of thiamin-related compounds: a stereochemical model for thiamin catalysis,” Journal of the American Chemical Society, vol. 115, no. 26, pp. 12238–12250, 1993.
[42]
A. A. Shaffer and S. G. Wierschke, “Comparison of computational methods applied to oxazole, thiazole, and other heterocyclic compounds,” Journal of Computational Chemistry, vol. 14, no. 1, pp. 75–88, 1993.
[43]
F. T. Burling and B. M. Goldstein, “Computational studies of nonbonded sulfur-oxygen and selenium-oxygen interactions in the thiazole and selenazole nucleosides,” Journal of the American Chemical Society, vol. 114, no. 7, pp. 2313–2320, 1992.
[44]
S. Kabirand and A. M. Sapse, “An ab initio study of the proton affinities of some heteroatomic rings: Imidazole, oxazole, and thiazole,” Journal of Computational Chemistry, vol. 12, no. 9, pp. 1142–1146, 1991.
[45]
F. Mari, P. M. Lahti, and W. E. McEwen, “A theoretical study of the Wittig olefination reaction: MNDO-PM3 treatment of the Wittig half-reaction of unstabilized ylides with aldehydes,” Journal of the American Chemical Society, vol. 114, no. 3, pp. 813–821, 1992.
[46]
T. Engel and P. Reid, Physical Chemistry, Pearson Prentice Hall, Upper saddle River, NJ, USA, 2006.
[47]
R. P. Szajewski and G. M. Whitesides, “Rate constants and equilibrium constants for thiol-disulfide interchange reactions involving oxidized Glutathione,” Journal of the American Chemical Society, vol. 102, no. 6, pp. 2011–2026, 1980.