全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Biosorption of Pb(II) from Aqueous Solution Using Cow Hooves: Kinetics and Thermodynamics

DOI: 10.1155/2013/171865

Full-Text   Cite this paper   Add to My Lib

Abstract:

Biosorption of Pb(II) ions from aqueous solution by cow hooves (CHs) was investigated as a function of initial pH, contact time, and biosorbent dosage through batch studies. Equilibrium experiments were performed at three different temperatures (298, 308, and 318?K) using initial Pb2+ concentration ranging from 15 to 100?mgg?1. This study revealed that maximum uptake (96.2% removal) of Pb2+ took place within 30 minutes of agitation, and the process was brought to equilibrium within 60 minutes of equilibration. The equilibrium data were modelled using Langmuir, Freundlich, and Dubinin-Radushkevich (D-R) isotherm models. The Langmuir isotherm model fitted the data best at all temperatures considered. The Lagergren second-order kinetic model fitted the biosorption process better than the first-order model. The negative values obtained for both Gibb’s free energy change and enthalpy change are an indication of the spontaneous and exothermic nature of the sorption of Pb2+ onto CH. A study of the FTIR spectral obtained before and after Pb2+ sorption showed that carbonyl, hydroxyl, amino, and carboxyl groups were involved in the sorption process. 1. Introduction The presence of heavy metals in the environment, particularly the aquatic environment, cannot be over emphasized. Their presence in the environment has become a great threat all over the years because of their nonbiodegradability, toxicity, persistency, and bioaccumulation tendency [1, 2]. Heavy metals are introduced majorly into the environment through wastewater generated from various industrial activities such as mining, electroplating, metal finishing, dyeing, battery manufacturing processes, and production of paints and pigments [3, 4]. Lead is one of the most toxic heavy metals and important contaminants in aquatic environments. Lead can exist in organic and inorganic forms. Both forms have been identified to be poisonous with the former being more poisonous [5]. The maximum allowable limit of Pb considered safe in drinking water by the World Health Organization (WHO) is 50?ppb, whereas less than 15?pp is adopted by the United States Environmental Protection Agency (US EPA) [6]. The permissible limit of lead for effluent discharge to inland surface water is 0.1?mg/L [7]. Therefore, to conform to these standards and to keep a safe environment, it becomes absolutely necessary to reduce the amount of this deleterious metal from aqueous wastes generated from industries before they are released into the environment. This necessity has seriously enhanced the demand for new technologies for metal

References

[1]  M. Jain, V. K. Garg, and K. Kadirvelu, “Adsorption of hexavalent chromium from aqueous medium onto carbonaceous adsorbents prepared from waste biomass,” Journal of Environmental Management, vol. 91, no. 4, pp. 949–957, 2010.
[2]  Y. Bulut and Z. Baysal, “Removal of Pb(II) from wastewater using wheat bran,” Journal of Environmental Management, vol. 78, no. 2, pp. 107–113, 2006.
[3]  M. E. Argun, S. Dursun, C. Ozdemir, and M. Karatas, “Heavy metal adsorption by modified oak sawdust: thermodynamics and kinetics,” Journal of Hazardous Materials, vol. 141, no. 1, pp. 77–85, 2007.
[4]  A. Sari and M. Tuzen, “Biosorption of cadmium(II) from aqueous solution by red algae (Ceramium virgatum): equilibrium, kinetic and thermodynamic studies,” Journal of Hazardous Materials, vol. 157, no. 2-3, pp. 448–454, 2008.
[5]  K. R. Krishna and L. Phillip, “Bioremediation of Cr (VI) in contaminated soils,” Journal of Hazardous Materials, vol. 121, pp. 109–117, 2005.
[6]  B. Volesky, “Detoxification of metal-bearing effluents: biosorption for the next century,” Hydrometallurgy, vol. 59, no. 2-3, pp. 203–216, 2001.
[7]  TERI Energy Data Directory & Yearbook, Tata Energy Research Institute, New Delhi, India, 2005-2006.
[8]  A. Ratnakumari and K. Sobha, “Biosorption of Cu2+ using animal polymers: chick and duck feathers,” International Journal of Research in Pharmaceutical and Biomedical Sciences, vol. 3, no. 2, pp. 664–669, 2012.
[9]  S. Khatoon, J. Anwar, M. Hassan, R. Farooq, H. B. Fatima, and H. N. Khalid, “Removal of chromium (VI) by biosorption on Eucalptus bark,” World Applied Science Journal, vol. 6, no. 12, pp. 1638–1643, 2009.
[10]  M. A. Tofighy and T. Mohammadi, “Adsorption of divalent heavy metal ions from water using carbon nanotube sheets,” Journal of Hazardous Materials, vol. 185, no. 1, pp. 140–147, 2011.
[11]  M. A. Khan, R. A. K. Rao, and M. Ajmal, “Heavy metal pollution and its control through nonconventional adsorbents (1998–2007): a review,” Journal of International Environmental Application & Science, vol. 3, no. 2, pp. 101–141, 2008.
[12]  P. S. Kumar, S. Ramalingam, R. V. Abhinaya, S. D. Kirupha, A. Murugesan, and S. Sivanesan, “Adsorption of metal ions onto the chemically modified agricultural waste,” Clean—Soil, Air, Water, vol. 40, no. 2, pp. 188–197, 2012.
[13]  N. Nasuha, B. H. Hameed, and A. T. M. Din, “Rejected tea as a potential low-cost adsorbent for the removal of methylene blue,” Journal of Hazardous Materials, vol. 175, no. 1–3, pp. 126–132, 2010.
[14]  M. A. Hossain, H. H. Ngo, W. S. Guo, and T. V. Nguyen, “Biosorption of Cu (II) from water by banana peel base biosorbent: experiments and models of adsorption and desorption,” Journal of Water Sustainability, vol. 1, pp. 87–104, 2012.
[15]  I. Osasona, A. O. Adebayo, and O. O. Ajayi, “Adsorptive removal of chromium (VI) from aqueous solution using cow hooves,” Journal of Scientific Research and Reports, vol. 2, no. 1, pp. 288–303, 2013.
[16]  L. Wang, J. Zhang, R. Zhao, Y. Li, C. Li, and C. Zhang, “Adsorption of Pb(II) on activated carbon prepared from Polygonum orientale Linn.: kinetics, isotherms, pH, and ionic strength studies,” Bioresource Technology, vol. 101, no. 15, pp. 5808–5814, 2010.
[17]  K. Vijayaraghavan and Y.-S. Yun, “Bacterial biosorbents and biosorption,” Biotechnology Advances, vol. 26, no. 3, pp. 266–291, 2008.
[18]  A. S. A. Prasad, G. Varatharaju, C. Anushri, and S. Dhivyasree, “Biosorption of lead by Pleurotus florida and Trichoderma viride,” British Biotechnology Journal, vol. 3, no. 1, pp. 66–78, 2013.
[19]  P. R. Puranik and K. M. Paknikar, “Biosorption of lead and zinc from solutions using Streptoverticillium cinnamoneum waste biomass,” Journal of Biotechnology, vol. 55, no. 2, pp. 113–124, 1997.
[20]  R. Pardo, M. Herguedas, E. Barrado, and M. Vega, “Biosorption of cadmium, copper, lead and zinc by inactive biomass of Pseudomonas putida,” Analytical and Bioanalytical Chemistry, vol. 376, no. 1, pp. 26–32, 2003.
[21]  A. O. Adebayo, “Investigation on Pleurotus ferulae potential for the sorption of Pb (II) from aqueous solution,” Bulletin of Chemical Society of Ethiopia, vol. 27, no. 1, pp. 25–34, 2013.
[22]  G. Tan, H. Yuan, Y. Liu, and D. Xiao, “Removal of lead from aqueous solution with native and chemically modified corncobs,” Journal of Hazardous Materials, vol. 174, no. 1–3, pp. 740–745, 2010.
[23]  S. B. Choi and Y.-S. Yun, “Lead biosorption by waste biomass of Corynebacterium glutamicum generated from lysine fermentation process,” Biotechnology Letters, vol. 26, no. 4, pp. 331–336, 2004.
[24]  E. Fuchs, “Keratins and the skin,” Annual Review of Cell and Developmental Biology, vol. 111, pp. 23–153, 1995.
[25]  BBC News, “The unsual uses for animal body parts,” June 2011, http://www.bbc.co.uk/news/mobile/science-environment-13670184.
[26]  M. Riaz, R. Nadeem, M. A. Hanif, T. M. Ansari, and K.-U. Rehman, “Pb(II) biosorption from hazardous aqueous streams using Gossypium hirsutum (Cotton) waste biomass,” Journal of Hazardous Materials, vol. 161, no. 1, pp. 88–94, 2009.
[27]  Z. Aksu, “Determination of the equilibrium, kinetic and thermodynamic parameters of the batch biosorption of nickel(II) ions onto Chlorella vulgaris,” Process Biochemistry, vol. 38, no. 1, pp. 89–99, 2002.
[28]  S. Tunali, A. ?abuk, and T. Akar, “Removal of lead and copper ions from aqueous solutions by bacterial strain isolated from soil,” Chemical Engineering Journal, vol. 115, no. 3, pp. 203–211, 2006.
[29]  C.-C. Lin and Y.-T. Lai, “Adsorption and recovery of lead(II) from aqueous solutions by immobilized Pseudomonas aeruginosa PU21 beads,” Journal of Hazardous Materials, vol. 137, no. 1, pp. 99–105, 2006.
[30]  G. Vazquez, G. Antorrena, J. Gonzalez, and M. D. Doval, “Adsorption of heavy metal ions by chemically modified Pinus pinaster bark,” Bioresource Technology, vol. 48, no. 3, pp. 251–255, 1994.
[31]  S. V. Kertman, G. M. Kertman, and Z. S. Chibrikova, “Peat as a heavy metal sorbent,” Journal of Applied Chemistry of the USSR, vol. 66, no. 2, pp. 465–466, 1993.
[32]  W.-B. Lu, J.-J. Shi, C.-H. Wang, and J.-S. Chang, “Biosorption of lead, copper and cadmium by an indigenous isolate Enterobacter sp. J1 possessing high heavy-metal resistance,” Journal of Hazardous Materials, vol. 134, no. 1–3, pp. 80–86, 2006.
[33]  R. Zacaria, C. Gerente, Y. Andres, and P. le Cloirec, “Adsorption of several metal ions onto a low-cost biosorbent: kinetic and equilibrium studies,” Environmental Science and Technology, vol. 36, no. 9, pp. 2067–2073, 2002.
[34]  I. Mobasherpour, E. Salahi, and M. Pazouki, “Removal of nickel (II) from aqueous solutions by using nano-crystalline calcium hydroxyapatite,” Journal of Saudi Chemical Society, vol. 15, no. 2, pp. 105–112, 2011.
[35]  B. S. Krishna, D. S. R. Murty, and B. S. J. Prakash, “Thermodynamics of chromium(VI) anionic species sorption onto surfactant-modified montmorillonite clay,” Journal of Colloid and Interface Science, vol. 229, no. 1, pp. 230–236, 2000.
[36]  Q. Li, J. Zhai, W. Zhang, M. Wang, and J. Zhou, “Kinetic studies of adsorption of Pb(II), Cr(III) and Cu(II) from aqueous solution by sawdust and modified peanut husk,” Journal of Hazardous Materials, vol. 141, no. 1, pp. 163–167, 2007.
[37]  R. Han, W. Zou, W. Yu, S. Cheng, Y. Wang, and J. Shi, “Biosorption of methylene blue from aqueous solution by fallen phoenix tree's leaves,” Journal of Hazardous Materials, vol. 141, no. 1, pp. 156–162, 2007.
[38]  J. O. Babalola, N. A. A. Babarinde, O. A. Popoola, and V. O. Oninla, “Kinetic, isothermal and thermodynamic studies of the biosorption of Ni(II) and Cr(III) from aqueous solutions by Talinum triangulare (water leaf),” The Pacific Journal of Science and Technology, vol. 10, no. 1, pp. 439–450, 2009.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133