全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Density Functional Theory of Mild Steel Corrosion in Acidic Media Using Dyes as Inhibitor: Adsorption onto Fe(110) from Gas Phase

DOI: 10.1155/2013/175910

Full-Text   Cite this paper   Add to My Lib

Abstract:

Quantum chemical calculations based on density functional theory (DFT) methods were performed on indigo blue (IB), methylene blue (MB), and crystal violet (CV) molecules as inhibitors for iron corrosion in acid media. DFT calculations were performed on the molecular structures to describe electronic parameters which are associated with inhibition efficiency such as the values ?4.981?eV, ?4.518?eV, and ?3.872?eV which increased in the order IB > MB > CV while values were ?3.73?eV, ?3.63?eV, and ?2.87?eV for IB, MB, and CV, respectively. Quench molecular dynamics simulations performed at metal/vacuum interface were applied to find the equilibrium adsorption configurations and calculate the minima interaction energy between inhibitor molecules and iron surface Fe(110). The theoretical order of inhibition efficiency of these dye molecules had a linear relationship with experimentally observed inhibition efficiency on iron corrosion in acid media. The electronic structures as well as reactivity elucidate parameters which could be practical in designing novel high-efficiency, cheap, and eco-friendly inhibitors by quantitative structure-activity relationship (QSAR) method. 1. Introduction A dye is a coloured substance that has an affinity to the substrate to which it is being applied. Dyes are obtained from animal, vegetable, or mineral origin and appear to be coloured because they absorb some wavelengths of light. Dyes are in our ancient science and effects of dyes are known in the medical industry, textile industry, and cellulose industries and in recent times as corrosion inhibitors of metals both in acidic and alkaline aggressive environments, as redox indicator in analytical chemistry, photosensitizer used to create singlet oxygen when exposed to both oxygen and light, to examine RNA or DNA gel electrophoresis, and also in a number of different staining procedures such as Wright's stain and Jenner's stain [1–5]. The corrosion inhibition characteristics of dye are attributed to adsorption of the dye molecule on the metal surface, hence reducing the surface area susceptible to attacks by the corrosive media. This might be by algebraic blocking of active sites on the metal surface or by polarizing the individual metal atoms to which they are adsorbed thereby influencing the intrinsic reactivity of the metal [6]. Many researchers report that the inhibition effect mainly depends on some physicochemical and electronic properties of the organic inhibitor which relate to its functional groups, steric effects, electronic density of donor atoms, orbital character

References

[1]  A. D. Becke, “Density-functional exchange-energy approximation with correct asymptotic behavior,” Physical Review A, vol. 38, pp. 3098–3100, 1988.
[2]  I. B. Obot and N. O. Obi-Egbedi, “Theoretical study of benzimidazole and its derivatives and their potential activity as corrosion inhibitors,” Corrosion Science, vol. 52, no. 2, pp. 657–660, 2010.
[3]  M. ?ahin, G. Gece, F. Karc?, and S. Bilgic, “Experimental and theoretical study of the effect of some heterocyclic compounds on the corrosion of low carbon steel in 3.5% NaCl medium,” Journal of Applied Electrochemistry, vol. 38, no. 6, pp. 809–815, 2008.
[4]  D. X. Wang and H. M. Xiao, “Quantum chemical calculation on chemical adsorption energy of imidazolines and Fe atom,” Journal of Molecular Science, vol. 16, pp. 102–105, 2000.
[5]  E. E. Oguzie, C. K. Enenebeaku, C. O. Akalezi, S. C. Okoro, A. A. Ayuk, and E. N. Ejike, “Adsorption and corrosion-inhibiting effect of Dacryodis edulis extract on low-carbon-steel corrosion in acidic media,” Journal of Colloid and Interface Science, vol. 349, no. 1, pp. 283–292, 2010.
[6]  E. Jamalizadeh, S. M. A. Hosseini, and A. H. Jafari, “Quantum chemical studies on corrosion inhibition of some lactones on mild steel in acid media,” Corrosion Science, vol. 51, no. 6, pp. 1428–1435, 2009.
[7]  M. Karelson, V. S. Lobanov, and A. R. Katritzky, “Quantum-chemical descriptors in QSAR/QSPR studies,” Chemical Reviews, vol. 96, no. 3, pp. 1027–1043, 1996.
[8]  M. A. Amin, K. F. Khaled, Q. Mohsen, and H. A. Arida, “A study of the inhibition of iron corrosion in HCl solutions by some amino acids,” Corrosion Science, vol. 52, pp. 1684–1695, 2010.
[9]  G. Gece, S. Bilgic, and O. Turksen, “Quantum chemical studies of some amino acids on the corrosion of cobalt in sulfuric acid solution,” Materials and Corrosion, vol. 61, no. 2, pp. 141–146, 2010.
[10]  C. Gruber and V. Buss, “Quantum-mechanically calculated properties for the development of quantitative structure-activity relationships (QSAR'S). pKA-values of phenols and aromatic and aliphatic carboxylic acids,” Chemosphere, vol. 19, no. 10-11, pp. 1595–1609, 1989.
[11]  J. Fu, S. Li, Y. Wang, L. Cao, and L. Lu, “Computational and electrochemical studies of some amino acid compounds as corrosion inhibitors for mild steel in hydrochloric acid solution,” Journal of Materials Science, vol. 45, pp. 6255–6265, 2010.
[12]  J. Fang and J. Li, “Quantum chemistry study on the relationship between molecular structure and corrosion inhibition efficiency of amides,” Journal of Molecular Structure: THEOCHEM, vol. 593, pp. 179–185, 2002.
[13]  R. M. Issa, M. K. Awad, and F. M. Atlam, “Quantum chemical studies on the inhibition of corrosion of copper surface by substituted uracils,” Applied Surface Science, vol. 255, no. 5, part 1, pp. 2433–2441, 2008.
[14]  A. Yurt, G. Bereket, and C. Ogretir, “Quantum chemical studies on inhibition effect of amino acids and hydroxy carboxylic acids on pitting corrosion of aluminium alloy 7075 in NaCl solution,” Journal of Molecular Structure: THEOCHEM, vol. 725, no. 1–3, pp. 215–221, 2005.
[15]  G. Gece, “The use of quantum chemical methods in corrosion inhibitor studies,” Corrosion Science, vol. 50, no. 11, pp. 2981–2992, 2008.
[16]  G. Zhang and C. B. Musgrave, “Comparison of DFT methods for molecular orbital eigenvalue calculations,” Journal of Physical Chemistry A, vol. 111, no. 8, pp. 1554–1561, 2007.
[17]  G. Bereket, E. Hur, and C. Ogretir, “Quantum chemical studies on some imidazole derivatives as corrosion inhibitors for iron in acidic medium,” Journal of Molecular Structure: THEOCHEM, vol. 578, pp. 79–88, 2002.
[18]  J. Vosta and J. Eliasek, “Study on corrosion inhibition from aspect of quantum chemistry,” Corrosion Science, vol. 11, pp. 223–229, 1971.
[19]  E. E. Oguzie, Y. Li, S. G. Wang, and F. Wanga, “Understanding corrosion inhibition mechanisms-experimental and theoretical approach,” RSC Advances, vol. 1, pp. 866–873, 2011.
[20]  S. Xia, M. Qiu, L. Yu, F. Liu, and H. Zhao, “Molecular dynamics and density functional theory study on relationship between structure of imidazoline derivatives and inhibition performance,” Corrosion Science, vol. 50, no. 7, pp. 2021–2029, 2008.
[21]  F. Kandemirli and S. Sagdinc, “Theoretical study of corrosion inhibition of amides and thiosemicarbazones,” Corrosion Science, vol. 49, no. 5, pp. 2118–2130, 2007.
[22]  C. D. Taylor, R. G. Kelly, and M. Neurock, “A first-principles analysis of the chemisorption of hydroxide on copper under electrochemical conditions: a probe of the electronic interactions that control chemisorption at the electrochemical interface,” Journal of Electroanalytical Chemistry, vol. 607, no. 1-2, pp. 167–174, 2007.
[23]  D. Wanga, S. Lia, Y. Yinga, M. Wanga, H. Xiaob, and Z. Che, “Theoretical and experimental studies of structure and inhibition efficiency of imidazoline derivatives,” Corrosion Science, vol. 41, no. 10, pp. 1911–1919, 1999.
[24]  J. Bartley, N. Huynh, S. E. Bottle, H. Flitt, T. Notoya, and D. P. Schweinsberg, “Computer simulation of the corrosion inhibition of copper in acidic solution by alkyl esters of 5-carboxybenzotriazole,” Corrosion Science, vol. 45, no. 1, pp. 81–96, 2003.
[25]  E. E. Oguzie, S. G. Wang, Y. Li, and F. H. Wang, “Influence of iron microstructure on corrosion inhibitor performance in acidic media,” Journal of Physical Chemistry C, vol. 113, no. 19, pp. 8420–8429, 2009.
[26]  L. M. Rodríguez-Valdez, A. Martínez-Villafa?e, and D. Glossman-Mitnik, “Computational simulation of the molecular structure and properties of heterocyclic organic compounds with possible corrosion inhibition properties,” Journal of Molecular Structure: THEOCHEM, vol. 713, no. 1–3, pp. 65–70, 2005.
[27]  A. Lesar and I. Milo?ev, “Density functional study of the corrosion inhibition properties of 1,2,4-triazole and its amino derivatives,” Chemical Physics Letters, vol. 483, no. 4–6, pp. 198–203, 2009.
[28]  E. E. Oguzie, C. Unaegbu, C. N. Ogukwe, B. N. Okolue, and A. I. Onuchukwu, “Inhibition of mild steel corrosion in sulphuric acid using indigo dye and synergistic halide additives,” Materials Chemistry and Physics, vol. 84, no. 2-3, pp. 363–368, 2004.
[29]  E. E. Oguzie, “Corrosion inhibition of mild steel in hydrochloric acid solution by methylene blue dye,” Materials Letters, vol. 59, no. 8-9, pp. 1076–1079, 2005.
[30]  W. Yang and R. Parr, “Hardness, softness, and the fukui function in the electronic theory of metals and catalysis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 82, pp. 6723–6726, 1985.
[31]  E. E. Oguzie, G. N. Onuoha, and A. I. Onuchukwu, “Inhibitory mechanism of mild steel corrosion in 2 M sulphuric acid solution by methylene blue dye,” Materials Chemistry and Physics, vol. 89, no. 2-3, pp. 305–311, 2005.
[32]  E. E. Oguzie, V. O. Njoku, C. K. Enenebeaku, C. O. Akalezi, and C. Obi, “Effect of hexamethylpararosaniline chloride (crystal violet) on mild steel corrosion in acidic media,” Corrosion Science, vol. 50, no. 12, pp. 3480–3486, 2008.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133