全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

The Radial Distribution Functions of Water as Derived from Radiation Total Scattering Experiments: Is There Anything We Can Say for Sure?

DOI: 10.1155/2013/279463

Full-Text   Cite this paper   Add to My Lib

Abstract:

The present paper reviews the investigation of ambient water structure and focusses in particular on the determination of the radial distribution functions of water from total experimental radiation scattering experiments. A novel method for removing the inelastic scattering from neutron data is introduced, and the effect of Compton scattering on X-ray data is discussed. In addition the extent to which quantum effects can be discerned between heavy and light water is analysed against these more recent data. It is concluded that, with the help of modern data analysis and computer simulation tools to interrogate the scattering data, a considerable degree of consistency can be obtained between recent and past scattering experiments on water. That consistency also gives a realistic estimate of the likely uncertainties in the extracted radial distribution functions, as well as offering a benchmark against which future experiments can be judged. 1. Introduction The structure of water is a recurring theme in the scientific literature on water and its many manifestations in solutions, mixtures and at surfaces. Being a liquid, water does not have “structure” in the sense that a crystal or a building has a structure. Nonetheless the forces between water molecules, which prevent molecular overlap and drive hydrogen bonding, give rise to characteristic correlations in space and time between water molecules. These correlations are called the structure of water, the nature of which correlations is a direct result of the forces between molecules. There is no direct way of measuring the forces between water molecules in the liquid, and these forces are different in the condensed state of the liquid compared to between two water molecules which approach each other in vacuo. Hence in principle if we can measure the correlations in the liquid experimentally, we can learn about the nature of the forces between molecules in water, and hence develop some intrinsic understanding about what makes water the rather important and special liquid that it is. Radiation scattering, whether by photons, neutrons or electrons, gives direct insight into these atom scale correlations, providing the radiation has the appropriate wavelength. This, combined with the a seemingly insatiable demand for knowledge about water at all levels of complexity, and from a wide variety of endeavours, including fundamental science, practical physical chemistry, geological situations, biological applications, and industry, has led to a plethora of data on water structure which extends back at least 80

References

[1]  S. E. McLain, C. J. Benmore, J. E. Siewenie, J. Urquidi, and J. F. C. Turner, “On the structure of liquid hydrogen fluoride,” Angewandte Chemie International Edition, vol. 43, no. 15, pp. 1952–1955, 2004.
[2]  P. Wernet, D. Nordlund, U. Bergmann et al., “The structure of the first coordination shell in liquid water,” Science, vol. 304, no. 5673, pp. 995–999, 2004.
[3]  C. Huang, K. T. Wikfeldt, T. Tokushima et al., “The inhomogeneous structure of water at ambient conditions,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 36, pp. 15214–15218, 2009.
[4]  G. N. I. Clark, C. D. Cappa, J. D. Smith, R. J. Saykally, and T. Head-Gordon, “The structure of ambient water,” Molecular Physics, vol. 108, no. 11, pp. 1415–1433, 2010.
[5]  J. P. Hansen and I. R. MacDonald, Theory of Simple Liquids, Academic Press, London, UK, 1986.
[6]  T. E. Faber and J. M. Ziman, “A theory of electrical properties of liquid metals 3. resistivity of binary alloys,” Philosophical Magazine, vol. 11, no. 109, p. 153, 1965.
[7]  C. G. Gray and K. E. Gubbins, Theory of Molecular Fluids, vol. 1 of Fundamentals, Oxford University Press, 1984.
[8]  V. F. Sears, “Theory of cold neutron scattering by thermal neutrons. i. Free rotation,” Canadian Journal of Physics, vol. 44, p. 1279, 1966.
[9]  B. E. Warren, X-Ray Diffraction, Dover, New York, NY, USA, 1990.
[10]  A. K. Soper, “Joint structure refinement of x-ray and neutron diffraction data on disordered materials: application to liquid water,” Journal of Physics, vol. 19, no. 33, Article ID 335206, 2007.
[11]  A. H. Narten and H. A. Levy, “Liquid water: molecular correlation functions from x-ray diffraction,” The Journal of Chemical Physics, vol. 55, no. 4, pp. 2263–2269, 1971.
[12]  D. I. Page and J. G. Powles, “The correlation of molecular orientation in liquid water by neutron and x-ray scattering,” Molecular Physics, vol. 21, no. 5, pp. 901–926, 1971.
[13]  J. G. Powles, J. C. Dore, and D. I. Page, “Coherent neutron scattering by light water (H2O) and a light-heavy water mixture (64 per cent H2O/36 per cent D2O),” Molecular Physics, vol. 24, pp. 1025–1037, 1972.
[14]  F. Hajdu, S. Lengyel, and G. Palinkas, “X-ray-scattering and radial-distribution function of liquid water,” Journal of Applied Crystallography, vol. 9, pp. 134–138, 1976.
[15]  E. Kalman, G. Palinkas, and P. Kovacs, “Liquid water.1. Electron-scattering,” Molecular Physics, vol. 34, pp. 505–524, 1977.
[16]  G. Palinkas, E. Kalman, and P. Kovacs, “Liquid water .2. Experimental atom pair-correlation functions of liquid d2o,” Molecular Physics, vol. 34, pp. 525–537, 1977.
[17]  W. E. Thiessen and A. H. Narten, “Neutron diffraction study of light and heavy water mixtures at 25 °C,” The Journal of Chemical Physics, vol. 77, no. 5, pp. 2656–2662, 1982.
[18]  A. H. Narten, W. E. Thiessen, and L. Blum, “Atom pair distribution functions of liquid water at 25°C from neutron diffraction,” Science, vol. 217, no. 4564, pp. 1033–1034, 1982.
[19]  A. K. Soper and R. N. Silver, “Hydrogen-hydrogen pair correlation function in liquid water,” Physical Review Letters, vol. 49, no. 7, pp. 471–474, 1982.
[20]  A. K. Soper and P. A. Egelstaff, “The structure of liquid-hydrogen chloride,” Molecular Physics, vol. 42, pp. 399–410, 1981.
[21]  A. K. Soper and M. G. Phillips, “A new determination of the structure of water at 25°C,” Chemical Physics, vol. 107, no. 1, pp. 47–60, 1986.
[22]  J. C. Dore, M. Garawi, and M. C. Bellissent-Funel, “Neutron diffraction studies of the structure of water at ambient temperatures, revisited [a review of past developments and current problems],” Molecular Physics, vol. 102, no. 19-20, pp. 2015–2035, 2004.
[23]  A. K. Soper, F. Bruni, and M. A. Ricci, “Site-site pair correlation functions of water from 25 to 400 °C: revised analysis of new and old diffraction data,” The Journal of Chemical Physics, vol. 106, no. 1, pp. 247–254, 1997.
[24]  A. K. Soper, “The radial distribution functions of water and ice from 220 to 673 K and at pressures up to 400 MPa,” Chemical Physics, vol. 258, no. 2-3, pp. 121–137, 2000.
[25]  R. L. McGreevy and L. Pusztai, “Reverse monte carlo simulation: a new technique for the determination of disordered structures,” Molecular Simulations, vol. 1, pp. 359–367, 1988.
[26]  P. Jedlovszky, I. Bakó, and G. Pálinkás, “Reverse monte carlo simulation of liquid water,” Chemical Physics Letters, vol. 221, no. 1, pp. 183–187, 1994.
[27]  H. Xu and M. Kotbi, “Orientational pair correlation function of liquid water from a reverse Monte Carlo study,” Chemical Physics Letters, vol. 248, no. 1-2, pp. 89–94, 1996.
[28]  A. K. Soper, “Empirical potential Monte Carlo simulation of fluid structure,” Chemical Physics, vol. 202, no. 2-3, pp. 295–306, 1996.
[29]  A. K. Soper, “Tests of the empirical potential structure refinement method and a new method of application to neutron diffraction data on water,” Molecular Physics, vol. 99, no. 17, pp. 1503–1516, 2001.
[30]  A. K. Soper, “Partial structure factors from disordered materials diffraction data: an approach using empirical potential structure refinement,” Physical Review B, vol. 72, no. 10, pp. 1–12, 2005.
[31]  L. Pusztai, “Partial pair correlation functions of liquid water,” Physical Review B, vol. 60, no. 17, pp. 11851–11854, 1999.
[32]  L. Pusztai, “How well do we know the structure of liquid water?” Physica B, vol. 276–278, pp. 419–420, 2000.
[33]  L. Pusztai, “Further notes concerning the partial pair correlation functions of liquid (ambient) water,” Physica A, vol. 314, no. 1–4, pp. 514–520, 2002.
[34]  L. Pusztai, O. Pizio, and S. Sokolowski, “Comparison of interaction potentials of liquid water with respect to their consistency with neutron diffraction data of pure heavy water,” The Journal of Chemical Physics, vol. 129, no. 18, Article ID 184103, 6 pages, 2008.
[35]  M. Leetmaa, K. T. Wikfeldt, M. P. Ljungberg et al., “Diffraction and IR/Raman data do not prove tetrahedral water,” The Journal of Chemical Physics, vol. 129, no. 8, Article ID 084502, 13 pages, 2008.
[36]  A. K. Soper, “An asymmetric model for water structure,” Journal of Physics, vol. 17, no. 45, pp. S3273–S3282, 2005.
[37]  F. Bruni, M. A. Ricci, and A. K. Soper, “Obtaining distribution functions for water from diffraction data,” in Francesco Paolo Ricci: His Legacy and Future Perspectives of Neutron Scattering, M. Nardone and M. A. Ricci, Eds., vol. 76, Società Italiana di Fisica, Bologna, Italy, 2001.
[38]  A. Zeidler, P. S. Salmon, H. E. Fischer et al., “Oxygen as a site specific probe of the structure of water and oxide materials,” Physical Review Letters, vol. 107, no. 14, Article ID 145501, 2011.
[39]  A. Zeidler, P. S. Salmon, H. E. Fischer, et al., “Zeidler et al. Reply,” Physical Review Letters, vol. 108, no. 25, Article ID 259604, 1 pages, 2012.
[40]  A. Zeidler, P. S. Salmon, H. E. Fischer, J. C. Neuefeind, J. M. Simonson, and T. E. Markland, “Isotope effects in water as investigated by neutron diffraction and path integral molecular dynamics,” Journal of Physics, vol. 24, no. 28, Article ID 284126, 2012.
[41]  G. S. Fanourgakis and S. S. Xantheas, “Development of transferable interaction potentials for water. v. extension of the flexible, polarizable, thole-type model potential (ttm3-f, v. 3. 0) to describe the vibrational spectra of water clusters and liquid water,” The Journal of Chemical Physics, vol. 128, no. 7, Article ID 074506, 2008.
[42]  A. K. Soper and C. J. Benmore, “Quantum differences between heavy and light water,” Physical Review Letters, vol. 101, no. 6, Article ID 065502, 4 pages, 2008.
[43]  A. K. Soper and C. J. Benmore, “Comment on oxygen as a site specific probe of the structure of water and oxide materials,” Physical Review Letters, vol. 108, no. 25, Article ID 259603, 2012.
[44]  G. Placzek, “The scattering of neutrons by systems of heavy nuclei,” Physical Review, vol. 86, no. 3, pp. 377–388, 1952.
[45]  H. E. Fischer, A. C. Barnes, and P. S. Salmon, “Neutron and x-ray diffraction studies of liquids and glasses,” Reports on Progress in Physics, vol. 69, pp. 233–299, 2006.
[46]  L. Van Hove, “Correlations in space and time and born approximation scattering in systems of interacting particles,” Physical Review, vol. 95, no. 1, pp. 249–262, 1954.
[47]  G. Rickayzen and J. G. Powles, “Slow-neutron scattering by molecules .1. Rigid diatomicmolecules,” Molecular Physics, vol. 32, pp. 301–321, 1976.
[48]  J. G. Powles and G. Rickayzen, “Slow-neutron scattering by molecules .2. Vibrating homonuclear diatomic-molecules,” Molecular Physics, vol. 32, pp. 323–342, 1976.
[49]  J. G. Powles, “Slow-neutron scattering by molecules .3. Recoil corrections for diatomic molecules reactors,” Molecular Physics, vol. 36, pp. 1161–1180, 1978.
[50]  J. G. Powles, “Slow-neutron scattering by molecules .4. Recoil corrections for diatomic molecules time of flight,” Molecular Physics, vol. 36, pp. 1181–1198, 1978.
[51]  J. G. Powles, “Slow-neutron scattering by molecules .5. Recoil corrections for any molecule,” Molecular Physics, vol. 37, pp. 623–641, 1979.
[52]  T. Matsumoto, “Dynamical correction of neutron-diffraction data for light-nuclei liquids,” Journal of Nuclear Science and Technology, vol. 16, no. 6, pp. 401–405, 1979.
[53]  M. Rovere, L. Blum, and A. H. Narten, “The inelasticity correction for heavy water,” The Journal of Chemical Physics, vol. 73, no. 8, pp. 3729–3734, 1980.
[54]  M. Rovere, L. Blum, and A. H. Narten, “The inelasticity correction for heavy water,” The Journal of Chemical Physics, vol. 73, no. 8, pp. 3729–3734, 1980.
[55]  P. A. Egelstaff and A. K. Soper, “The scattering of slow-neutrons by diatomic molecular fluids .2. Moment expansions,” Molecular Physics, vol. 40, pp. 569–584, 1980.
[56]  L. Blum, M. Rovere, and A. H. Narten, “Dynamic corrections for neutron scattering of water in the free molecule approximation,” The Journal of Chemical Physics, vol. 77, no. 5, pp. 2647–2655, 1982.
[57]  L. Blum, M. Rovere, and A. H. Narten, “Dynamic corrections for neutron scattering of water in the free molecule approximation,” The Journal of Chemical Physics, vol. 77, no. 5, pp. 2647–2655, 1982.
[58]  P. A. Egelstaff, Methods of Experimental Physics, vol. 23 of Neutron Scattering, chapter 14, Academic, London, UK, 1987, Part B, edited by: D. L. Price and K. Skóld.
[59]  Y. Kameda, M. Sasaki, T. Usuki, et al., “Inelasticity effect on neutron scattering intensities of the null-h2o,” Journal of Neutron Research, vol. 11, pp. 153–163, 2003.
[60]  P. A. Egelstaff and A. K. Soper, “The scattering of slow-neutrons by diatomic molecular fluids. 1. Models,” Molecular Physics, vol. 40, pp. 553–567, 1980.
[61]  J. R. Granada, “Slow-neutron scattering by molecular gases: a synthetic scattering function,” Physical Review B, vol. 31, no. 7, pp. 4167–4177, 1985.
[62]  A. K. Soper, “Inelasticity corrections for time-of-flight and fixed wavelength neutron diffraction experiments,” Molecular Physics, vol. 107, no. 16, pp. 1667–1684, 2009.
[63]  A. K. Soper and E. R. Barney, “Extracting the pair distribution function from white-beam X-ray total scattering data,” Journal of Applied Crystallography, vol. 44, no. 4, pp. 714–726, 2011.
[64]  A. K. Soper, “Future perspectives for liquids and amorphous materials diffraction at isis,” Institute of Physics Conference Series, vol. 97, pp. 353–366, 1989.
[65]  D. T. Bowron, A. K. Soper, K. Jones et al., “Nimrod: the near and intermediate range order diffractometer of the isis second target station,” Review of Scientific Instruments, vol. 81, no. 3, Article ID 033905, 2010.
[66]  P. E. Mason, S. Ansell, and G. W. Neilson, “Neutron diffraction studies of electrolytes in null water: a direct determination of the first hydration zone of ions,” Journal of Physics, vol. 18, no. 37, pp. 8437–8447, 2006.
[67]  J. D. Bernal and R. H. Fowler, “A theory of water and ionic solution, with particular reference to hydrogen and hydroxyl ions,” The Journal of Chemical Physics, vol. 1, no. 8, pp. 515–548, 1933.
[68]  J. Morgan and B. E. Warren, “X-ray analysis of the structure of water,” The Journal of Chemical Physics, vol. 6, pp. 666–673, 1938.
[69]  A. H. Narten, M. D. Danford, and H. A. Levy, “X-ray diffraction study of liquid water in the temperature range 4–200°C,” Discussions of the Faraday Society, vol. 43, pp. 97–107, 1967.
[70]  W. Bol, “X-ray diffraction and structure of water,” Journal of Applied Crystallography, vol. 1, no. 4, pp. 234–241, 1968.
[71]  A. H. Narten and H. A. Levy, “Observed diffraction pattern and proposed models of liquid water,” Science, vol. 165, no. 3892, pp. 447–454, 1969.
[72]  J. A. Barker and R. O. Watts, “Structure of water, a monte carlo calculation,” Chemical Physics Letters, vol. 3, no. 3, pp. 144–145, 1969.
[73]  A. Rahman and F. H. Stillinger, “Molecular dynamics study of liquid water,” The Journal of Chemical Physics, vol. 55, no. 7, pp. 3336–3359, 1971.
[74]  H. J. C. Berendsen, J. P. M. Postma, W. F. Van Gunsteren, and J. Hermans, “Interaction models for water in relation to protein hydration,” Intermolecular Forces, vol. 11, no. 1, pp. 331–342, 1981.
[75]  H. J. C. Berendsen, J. R. Grigera, and T. P. Straatsma, “The missing term in effective pair potentials,” Journal of Physical Chemistry, vol. 91, no. 24, pp. 6269–6271, 1987.
[76]  W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey, and M. L. Klein, “Comparison of simple potential functions for simulating liquid water,” The Journal of Chemical Physics, vol. 79, no. 2, pp. 926–935, 1983.
[77]  W. L. Jorgensen and J. D. Madura, “Temperature and size dependence for monte carlo simulations of tip4p water,” Molecular Physics, vol. 56, no. 6, pp. 1381–1392, 1985.
[78]  M. W. Mahoney and W. L. Jorgensen, “A five-site model for liquid water and the reproduction of the density anomaly by rigid, nonpolarizable potential functions,” The Journal of Chemical Physics, vol. 112, no. 20, pp. 8910–8922, 2000.
[79]  J. L. Abascal and C. Vega, “A general purpose model for the condensed phases of water: TIP4P/2005,” The Journal of Chemical Physics, vol. 123, no. 23, Article ID 234505, 2005.
[80]  J. Neuefeind, C. J. Benmore, J. K. R. Weber, and D. Paschek, “More accurate X-ray scattering data of deeply supercooled bulk liquid water,” Molecular Physics, vol. 109, no. 2, pp. 279–288, 2011.
[81]  M. Sprik, J. Hutter, and M. Parrinello, “Ab initio molecular dynamics simulation of liquid water: comparison of three gradient-corrected density functionals,” The Journal of Chemical Physics, vol. 105, no. 3, pp. 1142–1152, 1996.
[82]  J. VandeVondele, F. Mohamed, M. Krack, J. Hutter, M. Sprik, and M. Parrinello, “The influence of temperature and density functional models in ab initio molecular dynamics simulation of liquid water,” The Journal of Chemical Physics, vol. 122, no. 1, Article ID 014515, 6 pages, 2005.
[83]  Y. S. Badyal, M. L. Saboungi, D. L. Price, S. D. Shastri, D. R. Haeffner, and A. K. Soper, “Electron distribution in water,” The Journal of Chemical Physics, vol. 112, no. 21, p. 9206, 2000.
[84]  G. Hura, D. Russo, R. M. Glaeser, T. Head-Gordon, M. Krack, and M. Parrinello, “Water structure as a function of temperature from x-ray scattering experiments and ab initio molecular dynamics,” Physical Chemistry Chemical Physics, vol. 5, no. 10, pp. 1981–1991, 2003.
[85]  R. T. Hart, C. J. Benmore, J. Neuefeind, S. Kohara, B. Tomberli, and P. A. Egelstaff, “Temperature dependence of isotopic quantum effects in water,” Physical Review Letters, vol. 94, no. 4, Article ID 047801, 2005.
[86]  L. Fu, A. Bienenstock, and S. Brennan, “X-ray study of the structure of liquid water,” The Journal of Chemical Physics, vol. 131, no. 23, Article ID 234702, 2009.
[87]  C. Huang, K. T. Wikfeldt, D. Nordlund, et al., “Wide-angle x-ray diffraction and molecular dynamics study of medium-range order in ambient and hot water,” Physical Chemistry Chemical Physics, vol. 13, no. 44, pp. 19997–20007, 2011.
[88]  V. Petkov, Y. Ren, and M. Suchomel, “Molecular arrangement in water: random but not quite,” Journal of Physics, vol. 24, no. 15, Article ID 155102, 2012.
[89]  L. B. Skinner, C. J. Benmore, and J. B. Parise, “Comment on ‘molecular arrangement in water: random but not quite’,” Journal of Physics, vol. 24, Article ID 338001, 2012.
[90]  A. K. Soper, “Water: two liquids divided by a common hydrogen bond,” The Journal of Physical Chemistry B, vol. 115, no. 48, pp. 14014–14022, 2011.
[91]  J. Krogh-Moe, “A method for converting experimental x-ray intensities to an absolute scale,” Acta Crystallographica, vol. 9, pp. 951–953, 1956.
[92]  N. Norman, “The fourier transform method of normalizing intensities,” Acta Crystallographica, vol. 10, pp. 370–373, 1957.
[93]  P. A. Egelstaff, D. I. Page, and J. G. Powles, “Orientational correlations in molecular liquids by neutron scattering carbon tetrachloride and germanium tetrabromide,” Molecular Physics, vol. 20, no. 5, pp. 881–894, 1971.
[94]  J. Wang, A. N. Tripathi, and V. H. Smith, “Chemical binding and electron correlation effects in x-ray and high energy electron scattering,” The Journal of Chemical Physics, vol. 101, no. 6, pp. 4842–4854, 1994.
[95]  J. M. Sorenson, G. Hura, R. M. Glaeser, and T. Head-Gordon, “What can x-ray scattering tell us about the radial distribution functions of water?” The Journal of Chemical Physics, vol. 113, no. 20, pp. 9149–9161, 2000.
[96]  J. Neuefeind, C. J. Benmore, B. Tomberli, and P. A. Egelstaff, “Experimental determination of the electron density of liquid H2O and D2O,” Journal of Physics, vol. 14, no. 23, pp. L429–L433, 2002.
[97]  A. H. Compton, “A quantum theory of the scattering of x-rays by light elements,” Physical Review, vol. 21, pp. 483–502, 1923.
[98]  P. A. M. Dirac, “Relativity quantum mechanics with an application to compton scattering,” Proceedings of the Royal Society A, vol. 111, pp. 405–423, 1926.
[99]  G. Breit, “A correspondence principle in the compton effect,” Physical Review, vol. 27, pp. 362–372, 1926.
[100]  A. K. Soper, “On the determination of the pair correlation-function from liquid structure factor measurements,” Chemical Physics, vol. 107, pp. 61–74, 1986.
[101]  F. J. Bermejo, J. Santoro, F. J. Mompean, and J. C. Dore, “On maximum entropy estimation of structural parameters from neutron scattering structure factors in disordered systems,” Nuclear Instruments and Methods in Physics Research B, vol. 28, no. 1, pp. 135–145, 1987.
[102]  A. K. Soper, “Orientational correlation function for molecular liquids: the case of liquid water,” The Journal of Chemical Physics, vol. 101, no. 8, pp. 6888–6901, 1994.
[103]  L. Pusztai and R. L. McGreevy, “Mcgr: an inverse method for deriving the pair correlation function from the structure factor,” Physica B, vol. 234–236, pp. 357–358, 1997.
[104]  L. Pusztai, “Partial pair correlation functions of liquid water,” Physical Review B, vol. 60, no. 17, pp. 11851–11854, 1999.
[105]  A. Botti, F. Bruni, S. Imberti, M. A. Ricci, and A. K. Soper, “Solvation shell of H+ ions in water,” Journal of Molecular Liquids, vol. 117, no. 1–3, pp. 77–79, 2005.
[106]  F. H. Stillinger and A. Rahman, “Improved simulation of liquid water by molecular dynamics,” The Journal of Chemical Physics, vol. 60, no. 4, pp. 1545–1557, 1974.
[107]  H. M. Rietveld, “A profile refinement method for nuclear and magnetic structures,” Journal of Applied Crystallography, vol. 2, no. 2, pp. 65–71, 1969.
[108]  R. T. Hart, Q. Mei, C. J. Benmore et al., “Isotope quantum effects in water around the freezing point,” The Journal of Chemical Physics, vol. 124, no. 13, Article ID 134505, 2006.
[109]  F. Paesani and G. A. Voth, “The properties of water: insights from quantum simulations,” The Journal of Physical Chemistry B, vol. 113, no. 17, pp. 5702–5719, 2009.
[110]  G. S. Kell, “Precise representation of volume properties of water at one atmosphere,” Journal of Chemical and Engineering Data, vol. 12, no. 1, pp. 66–69, 1967.
[111]  W. B. O’Dell, D. C. Baker, and S. E. McLain, “Structural evidence for interresidue hydrogen bonding observed for cellobiose in aqueous solution,” PLoS One, vol. 7, no. 10, Article ID e45311, 2012.
[112]  S. Díaz-Moreno, S. Ramos, and D. T. Bowron, “Solvation structure and ion complexation of La3+ in a 1 molal aqueous solution of lanthanum chloride,” Journal of Physical Chemistry A, vol. 115, no. 24, pp. 6575–6581, 2011.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133