The structure of carbonic layer in three samples composed of 4H polytype of silicon carbide and the following sequence of layers: carbon/nickel/silicon/nickel/silicon was investigated with Raman spectroscopy. Different thermal treatment of the samples led to differences in the structure of carbonic layer. Raman measurements were performed with visible excitation focused on two interfaces: silicon carbide/carbon and carbon/silicide. The results showed differences in the structure across carbon film although its thickness corresponds to 8/10 graphene layers. 1. Introduction Silicon carbide (SiC) is known as an excellent material for fabrication high-power, high-frequency, and high-temperature electronic devices due to its properties like: good thermal conductivity, high critical electric field, and simple method of dielectric layer fabrication [1, 2]. Formation of ohmic contacts with low specific resistance is an important aspect in application of silicon carbide [3]. This fabrication is realized by deposition of metallic layer on the substrate surface followed by thermal treatment at high temperature [4, 5]. Nickel is probably the most popular metal used in technology of ohmic contact formation, because the contacts formed with its application have specific contact resistance equal to ~10?6?Ω?cm2 [4]. The interaction of carbonic structures with the SiC substrate was investigated with X-ray photoelectron spectroscopy and Raman scattering [6]. The properties of the ohmic contact are determined by concentration of graphitic nanoflakes formed during the annealing procedure. The initial structure of carbon film has no impact on properties of the formed contact [6, 7]. In previous work, structural and electrical properties of different Ni- and Ni/Si-based contacts to silicon carbide were investigated [8]. Reported structural data obtained by various experimental techniques like X-ray diffraction (XRD), Rutherford Backscattering Spectrometry (RBS), and Secondary Ion Mass Spectrometry (SIMS) showed that optimal metallization sequence for manufacturing ohmic contacts is Ni/Si/Ni/Si. The thicknesses of each layer should provide optimal conditions for creation of Ni2Si silicides. This paper focuses the attention on structural properties on different sides of thin carbon film introduced between SiC substrate and nickel/silicon/nickel/silicon sequence of layer. Since thermal treatment at high temperature results in SiC decomposition, new carbon atoms appear at the interface between silicon carbide substrate and deposited carbonic layer. Decomposition of silicon
References
[1]
J. A. Cooper and A. Agarwal, “SiC power-switching devices-the second electronics revolution?” Proceedings of the IEEE, vol. 90, no. 6, pp. 956–968, 2002.
[2]
R. C. Clarke and J. W. Palmour, “SiC microwave power technologies,” Proceedings of the IEEE, vol. 90, no. 6, pp. 987–992, 2002.
[3]
H. Matsunami, “Current SiC technology for power electronic devices beyond Si,” Microelectronic Engineering, vol. 83, no. 1, pp. 2–4, 2006.
[4]
J. Crofton, P. G. McMullin, J. R. Williams, and M. J. Bozack, “High-temperature ohmic contact to n-type 6H-SiC using nickel,” Journal of Applied Physics, vol. 77, no. 3, pp. 1317–1319, 1995.
[5]
M. G. Rastegaeva, A. N. Andreev, A. A. Petrov, A. I. Babanin, M. A. Yagovkina, and I. P. Nikitina, “The influence of temperature treatment on the formation of Ni-based Schottky diodes and ohmic contacts to n-6H-SiC,” Materials Science and Engineering B, vol. 46, no. 1–3, pp. 254–258, 1997.
[6]
W. Lu, W. C. Mitchel, C. A. Thornton, G. R. Landis, and W. Eugene Collins, “Carbon structural transitions and ohmic contacts on 4H-SiC,” Journal of Electronic Materials, vol. 32, no. 5, pp. 426–431, 2003.
[7]
W. Lu, W. C. Mitchel, G. R. Landis, T. R. Crenshaw, and W. E. Collins, “Electrical contact behavior of Ni/C60/4H-SiC structures,” Journal Vacuum Science & Technology A, vol. 21, no. 4, pp. 1510–1514, 2003.
[8]
A. Kuchuk, V. Kladko, M. Guziewicz et al., “Fabrication and characterization of nickel silicide ohmic contacts to n-type 4H silicon carbide,” Journal of Physics, vol. 100, no. 4, Article ID 042003, 2008.
[9]
W. Norimatsu and M. Kusunoki, “Selective formation of ABC-stacked graphene layers on SiC(0001),” Physical Review B, vol. 81, no. 16, Article ID 161410, 2010.
[10]
P. Borowicz, A. Kuchuk, Z. Adamus et al., “Visible and deep-ultraviolet Raman spectroscopy as a tool for investigation of structural changes and redistribution of carbon in Ni-based ohmic contacts on silicon carbide,” ISRN Nanomaterials, vol. 2012, Article ID 852405, 11 pages, 2012.
[11]
P. Borowicz, T. Gutt, T. Ma?achowski, and M. Latek, “Carbonic inclusions on SiC/SiO2 interface investigated with Raman Scattering,” Diamond and Related Materials, vol. 20, no. 5-6, pp. 665–674, 2011.
[12]
A. C. Ferrari and J. Robertson, “Interpretation of Raman spectra of disordered and amorphous carbon,” Physical Review B, vol. 61, no. 20, pp. 14095–14107, 2000.
[13]
A. C. Ferrari and J. Robertson, “Raman spectroscopy of amorphous, nanostructured, diamond-like carbon, and nanodiamond,” Philosophical Transactions of the Royal Society A, vol. 362, no. 1824, pp. 2477–2512, 2004.
[14]
L. Ravagnan, F. Siviero, C. Lenardi et al., “Cluster-beam deposition and in situ characterization of carbyne-rich carbon films,” Physical Review Letters, vol. 89, no. 28, pp. 285506/1–285506/4, 2002.
[15]
C. H. Lui, Z. Li, Z. Chen, P. V. Klimov, L. E. Brus, and T. F. Heinz, “Imaging stacking order in few-layer graphene,” Nano Letters, vol. 11, no. 1, pp. 164–169, 2011.
[16]
C. Cong, T. Yu, K. Sato et al., “Raman characterization of ABA- and ABC-stacked trilayer graphene,” ACS Nano, vol. 5, no. 11, pp. 8760–8768, 2011.
[17]
C. Cong, T. Yu, R. Saito, G. F. Dresselhaus, and M. S. Dresselhaus, “Second-order overtone and combination raman modes of graphene layers in the range of 1690-2150 cm-1,” ACS Nano, vol. 5, no. 3, pp. 1600–1605, 2011.
[18]
V. W. Brar, G. G. Samsonidze, M. S. Dresselhaus et al., “Second-order harmonic and combination modes in graphite, single-wall carbon nanotube bundles, and isolated single-wall carbon nanotubes,” Physical Review B, vol. 66, no. 15, Article ID 155418, pp. 1554181–15541810, 2002.
[19]
N. Radi?, B. Pivac, F. Meinardi, and T. Koch, “Raman study of carbon clusters in W-C thin films,” Materials Science and Engineering A, vol. 396, no. 1-2, pp. 290–295, 2005.
[20]
Z. Y. Chen, J. P. Zhao, T. Yano, T. Ooie, M. Yoneda, and J. Sakakibara, “Observation of sp3 bonding in tetrahedral amorphous carbon using visible Raman spectroscopy,” Journal of Applied Physics, vol. 88, no. 5, pp. 2305–2308, 2000.
[21]
R. Rao, R. Podila, R. Tsuchikawa et al., “Effects of layer stacking on the combination raman modes in graphene,” ACS Nano, vol. 5, no. 3, pp. 1594–1599, 2011.
[22]
A. C. Ferrari, “Raman spectroscopy of graphene and graphite: disorder, electron-phonon coupling, doping and nonadiabatic effects,” Solid State Communications, vol. 143, no. 1-2, pp. 47–57, 2007.
[23]
R. Colby, M. L. Bolen, M. A. Capano, and E. A. Stach, “Amorphous interface layer in thin graphite films grown on the carbon face of SiC,” Applied Physics Letters, vol. 99, Article ID 101904, 2011.
[24]
F. Tuinstra and J. L. Koenig, “Raman spectrum of graphite,” Journal of Chemical Physics, vol. 53, no. 3, pp. 1126–1130, 1970.
[25]
R. J. Nemanich and S. A. Solin, “First- and second-order Raman scattering from finite-size crystals of graphite,” Physical Review B, vol. 20, no. 2, pp. 392–401, 1979.
[26]
J. Maultzsch, S. Reich, and C. Thomsen, “Double-resonant Raman scattering in graphite: interference effects, selection rules, and phonon dispersion,” Physical Review B, vol. 70, no. 15, Article ID 155403, pp. 155403–9, 2004.
[27]
M. S. Dresselhaus, G. Dresselhaus, A. Jorio, A. G. S. Filho, and R. Saito, “Raman spectroscopy on isolated single wall carbon nanotubes,” Carbon, vol. 40, no. 12, pp. 2043–2061, 2002.
[28]
M. Nishitani-Gamo, I. Sakaguchi, K. P. Loh, H. Kanda, and T. Ando, “Confocal Raman spectroscopic observation of hexagonal diamond formation from dissolved carbon in nickel under chemical vapor deposition conditions,” Applied Physics Letters, vol. 73, no. 6, pp. 765–767, 1998.
[29]
A. M. Rao, E. Richter, S. Bandow et al., “Diameter-selective Raman scattering from vibrational modes in carbon nanotubes,” Science, vol. 275, no. 5297, pp. 187–190, 1997.
[30]
J. R. Shi, X. Shi, Z. Sun, E. Liu, B. K. Tay, and S. P. Lau, “Ultraviolet and visible Raman studies of nitrogenated tetrahedral amorphous carbon films,” Thin Solid Films, vol. 366, no. 1-2, pp. 169–174, 2000.
[31]
H. Riascos, G. Zambrano, E. Camps, and P. Prieto, “Influence of nitrogen gas pressure on plume-plasma and chemical bonding of carbon nitride films synthesized by pulsed laser deposition,” Revista Mexicana de Fisica, vol. 53, no. 7, pp. 274–278, 2007.
[32]
W. Lu, W. C. Mitchel, G. R. Landis, T. R. Crenshaw, and W. E. Collins, “Catalytic graphitization and Ohmic contact formation on 4H-SiC,” Journal of Applied Physics, vol. 93, no. 9, pp. 5397–5403, 2003.
[33]
V. Y. Osipov, A. V. Baranov, V. A. Ermakov et al., “Raman characterization and UV optical absorption studies of surface plasmon resonance in multishell nanographite,” Diamond and Related Materials, vol. 20, no. 2, pp. 205–209, 2011.
[34]
C. Fantini, M. A. Pimenta, and M. S. Strano, “Two-phonon combination Raman modes in covalently functionalized single-wall carbon nanotubes,” Journal of Physical Chemistry C, vol. 112, no. 34, pp. 13150–13155, 2008.
[35]
T. L. Weiss, H. J. Chun, S. Okada et al., “Raman spectroscopy analysis of botryococcene hydrocarbons from the green microalga Botryococcus braunii,” Journal of Biological Chemistry, vol. 285, no. 42, pp. 32458–32466, 2010.
[36]
P. H. Tan, C. Y. Hu, J. Dong, and W. C. Shen, “Double resonance Raman scattering of second-order Raman modes from an individual graphite whisker,” Physica E, vol. 37, no. 1-2, pp. 93–96, 2007.
[37]
M. A. Pimenta, G. Dresselhaus, M. S. Dresselhaus, L. G. Can?ado, A. Jorio, and R. Saito, “Studying disorder in graphite-based systems by Raman spectroscopy,” Physical Chemistry Chemical Physics, vol. 9, no. 11, pp. 1276–1291, 2007.
[38]
R. Narula and S. Reich, “Double resonant Raman spectra in graphene and graphite: a two-dimensional explanation of the Raman amplitude,” Physical Review B, vol. 78, no. 16, Article ID 165422, 2008.
[39]
D. Yoon, H. Moon, H. Cheong, J. S. Choi, J. A. Choi, and B. H. Park, “Variations in the Raman spectrum as a function of the number of graphene layers,” Journal of the Korean Physical Society, vol. 55, no. 3, pp. 1299–1303, 2009.
[40]
A. C. Ferrari, J. C. Meyer, V. Scardaci et al., “Raman spectrum of graphene and graphene layers,” Physical Review Letters, vol. 97, no. 18, Article ID 187401, 2006.
[41]
P. Xu, Y. Yang, I. D. Qi et al., “A pathway between Bernal and rhombohedral stacked graphene layers with scanning tunnelling microscopy,” Applied Physics Letters, vol. 100, Article ID 201601, 2012.
[42]
S. Latil and L. Henrard, “Charge carriers in few-layer graphene films,” Physical Review Letters, vol. 97, no. 3, Article ID 036803, 2006.
[43]
Y. Wang, D. C. Alsmeyer, and R. L. McCreery, “Raman spectroscopy of carbon materials: structural basis of observed spectra,” Chemistry of Materials, vol. 2, no. 5, pp. 557–563, 1990.
[44]
P. C. Eklund, J. M. Holden, and R. A. Jishi, “Vibrational modes of carbon nanotubes; Spectroscopy and theory,” Carbon, vol. 33, no. 7, pp. 959–972, 1995.
[45]
R. Kosti?, M. Miri?, T. Radi?, M. Radovi?, R. Gaji?, and Z. V. Popovi?, “Optical characterization of graphene and highly oriented pyrolytic graphite,” Acta Physica Polonica A, vol. 116, no. 4, pp. 718–721, 2009.
[46]
K. Stock, C. Schriever, S. Lochbrunner, and E. Riedle, “Reaction path dependent coherent wavepacket dynamics in excited state intramolecular double proton transfer,” Chemical Physics, vol. 349, no. 1–3, pp. 197–203, 2008.
[47]
L. B. Biedermann, M. L. Bolen, M. A. Capano, D. Zemlyanov, and R. G. Reifenberger, “Insights into few-layer epitaxial graphene growth on 4H-SiC (000 1?) substrates from STM studies,” Physical Review B, vol. 79, no. 12, Article ID 125411, 2009.
[48]
P. R. Bandaru, “Electrical properties and applications of carbon nanotube structures,” Journal of Nanoscience and Nanotechnology, vol. 7, no. 4-5, pp. 1239–1267, 2007.
[49]
L. Kumari and S. V. Subramanyam, “Structural and electrical properties of amorphous carbon-sulfur composite films,” Bulletin of Materials Science, vol. 27, no. 3, pp. 289–294, 2004.