Evaluation of the Wind Power in the State of Paraíba Using the Mesoscale Atmospheric Model Brazilian Developments on the Regional Atmospheric Modelling System
This work aims to describe the wind power density in five sites in the State of Paraiba, as well as to access the ability of the mesoscale atmospheric model Brazilian developments on the regional atmospheric modeling system (BRAMS) in describing the intensity of wind in S?o Gon?alo Monteiro, Patos, Campina Grande, and Jo?o Pessoa. Observational data are wind speed and direction at 10?m high, provided by the National Institute of Meteorology (INMET). We used the numerical model BRAMS in simulations for two different months. We ran the model for rainy months: March and April. It was concluded that the BRAMS model is able to satisfactorily reproduce the monthly cycle of the wind regime considered, as well as the main direction. However the model tends to underestimate the wind speed. 1. Introduction As the using of wind power in the world grows, new technologies of generators and topology for wind power plants have been created in order to improve the utilization of energy from wind and its transmission. Numerical models of weather forecast are largely used in varied meteorological centers and find a range of applications in agriculture, water resources, tourism, and so forth. Forced by data and global models, it is common to local meteorological centers keeping systems of numerical forecast based on atmospheric models of limited area, with spatial resolutions of kilometers, typically. Some researches related to wind behavior are concentrated on the problem of adjustment of statistics distribution to data of wind speed ([1, 2] and others). Results of these researches also indicate the distribution of Weibull as the one that fits better to these data. According to Sauer et al. [3], Brazil offers excellent sites to install wind parks, and the best area is found along its coast. However, he indicates that in the countryside, particularly in northeast, where is located the State of Paraíba, there are found sites with capacity of wind power generation. Various numerical models of mesoscale such as (regional atmospheric modeling system) RAMS described in Cotton et al. [4], (regional spectral model) RSM described in Juang and Kanamitsu [5], and MM5 described in Duhdia et al. [6] solved physical processes from the surface to high atmosphere. These models are applied from the weather forecast to the measurement of pollutants dispersion. Among these, the (brazilian developments on the regional atmospheric modeling system) BRAMS model, developed from RAMS, whose basic structure is described by Pielke et al. [7]; Walko et al. [8]; and Cotton et al. [4]. However, an
References
[1]
C. G. Justus and A. Mikhail, “Height variation of wind speed and wind distribution,” Geophysical Research Letters, vol. 3, pp. 261–264, 1976.
[2]
L. van der Auwera, F. de Meyer, and L. M. Malet, “The use of the Weibull three-parameter model for estimating mean wind power densities,” Journal of Applied Meteorology, vol. 19, no. 7, pp. 819–825, 1980.
[3]
I. L. Sauer, M. S. Queiroz, J. C. G. Miragaya, R. C. Mascarenhas, and A. R. Q. Júnior, “Energia Renováveis: a??es e perspectivas na petrobras,” Bahia Análise e Dados, vol. 16, no. 1, pp. 9–22, 2006.
[4]
W. R. Cotton, R. A. Pielke, R. L. Walko et al., “RAMS 2001: current status and future directions,” Meteorology and Atmospheric Physics, vol. 82, no. 1–4, pp. 5–29, 2003.
[5]
H. M. H. Juang and M. Kanamitsu, “The NMC nested regional spectral model,” Monthly Weather Review, vol. 122, no. 1, pp. 3–26, 1994.
[6]
J. Duhdia, D. Gill, K. Manning, W. Wang, and C. Bruyere, PSU/NCAR Mesoscale Modeling System Tutorial Class Notes and Users’Guide (MM5 Modeling System Version 3), 2005.
[7]
R. A. Pielke, W. R. Cotton, R. L. Walko et al., “A comprehensive meteorological modeling system-RAMS,” Meteorology and Atmospheric Physics, vol. 49, no. 1–4, pp. 69–91, 1992.
[8]
R. L. Walko, C. J. Tremback, and R. F. A. Hertenstein, The Regional Atmospheric Modeling System. Version 3b. User’s Guide, ASTER Division, Fort Collins, Colo, USA, 1995.
[9]
E. P. Cavalcanti, Teor e transporte de vapor d’água na atmosfera do nordeste do Brasil [Tese de Doutorado-UFPB], Campina Grande—Paraíba, Brazil, 2001.
[10]
C. Chen and W. R. Cotton, “A one-dimensional simulation of the stratocumulus-capped mixed layer,” Boundary-Layer Meteorology, vol. 25, no. 3, pp. 289–321, 1983.
[11]
H. L. Kuo, “On formation and intensification of tropical cyclones through latent heat release by cumulus convection,” Journal of the Atmospheric Sciences, vol. 22, no. 1, pp. 40–63, 1964.
[12]
H. L. Kuo, “Further studies of the parameterization of the influence of cumulus convection on large-scale flow,” Journal of Atmospheric Sciences, vol. 31, pp. 1232–1240, 1974.
[13]
J. Molinari, “A general form of Kuo's cumulus parameterization,” Monthly Weather Review, vol. 113, no. 8, pp. 1411–1416, 1985.
[14]
J. Molinari and T. Corsetti, “Incorporation of cloud-scale and mesoscale downdrafts into a cumulus parameterization: results of one- and three-dimensional integrations,” Monthly Weather Review, vol. 113, no. 4, pp. 484–501, 1985.
[15]
G. A. Grell and D. Dévényi, “A generalized approach to parameterizing convection combining ensemble and data assimilation techniques,” Geophysical Research Letters, vol. 29, no. 14, article 1693, 4 pages, 2002.
[16]
E. P. Souza, Estudos teóricos e numéricos da rela??o entre convec??o e superfície heterogêneas na regi?o Amaz?nica. 121 f [Tese Doutorado em Meteorologia], Universidade de S?o Paulo, 1999.
[17]
G. L. Mellor and T. Yamada, “Development of a turbulence closure model for geophysical fluid problems,” Reviews of Geophysics & Space Physics, vol. 20, no. 4, pp. 851–875, 1982.
[18]
E. D. de Freitas, L. D. Martins, P. L. da Silva Dias, and M. de Fátima Andrade, “A simple photochemical module implemented in RAMS for tropospheric ozone concentration forecast in the metropolitan area of S?o Paulo, Brazil: coupling and validation,” Atmospheric Environment, vol. 39, no. 34, pp. 6352–6361, 2005.
[19]
E. D. Freitas, C. M. Rozoff, W. R. Cotton, and P. L. Silva Dias, “Interactions of an urban heat island and sea-breeze circulations during winter over the metropolitan area of S?o Paulo, Brazil,” Boundary-Layer Meteorology, vol. 122, no. 1, pp. 43–65, 2007.
[20]
J. L. Devore, Probabilidade e Estatística Para Engenharia e Ciência, Thomson Pioneira, S?o Paulo, Brazil, 2006.
[21]
R. A. Anthes, “Cumulus parameterization scheme utilizing a one-dimensional cloud model,” Monthy Weather Review, vol. 105, no. 3, pp. 270–300, 1977.
[22]
D. S. Reis Junior, “Previs?o sazonal de vaz?es no estado do ceará,” in Proceedings of the 8th Simpósio de Recursos Hídricos do Nordeste, Associa??o Brasileira de Recursos Hídricos, Gravatá-PE, Brazil, 2006.
[23]
A. H. Weber, M. R. Buckner, and J. H. Weber, “Statistical performance of several mesoscale atmospheric dispersion models,” Journal of Applied Meteorology, vol. 21, no. 11, pp. 1633–1644, 1982.
[24]
P. H. S. Maria, Modelagem numérica em alta resolu??o para previs?o de gera??o de energia eólica no ceará. 123 f [Disserta??o de Mestrado], Fortaleza—Ceará, Brazil, 2007.
[25]
E. B. A. C. Cunha, Investiga??o do potencial eólico de regi?o serrana no ceará. Disserta??o [Mestrado em Ciências Físicas Aplicadas], Universidade Estadual do Ceará, 2008.
[26]
G. Huang and A. T. Paes, “Posso usar o teste t de Student quando preciso comparar três ou mais grupo?” Einstein, vol. 7, no. 2, pp. 63–64, 2009.
[27]
H. E. A. Menezes, Influência da zona de convergência secundária do atlantico sul sobre a ocorrência de precipita??o no leste do Nordeste Brasileiro [Tese de Doutorado-UFCG], Campina Grande—Paraíba, Brazil, 2010.
[28]
A. L. Bruni, Estatística Aplicada à Gest?o Empresarial, Atlas, S?o Paulo, Brazil, 2007.