全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Comparative Study of the Physicochemical Characterization of Some Oils as Potential Feedstock for Biodiesel Production

DOI: 10.5402/2012/621518

Full-Text   Cite this paper   Add to My Lib

Abstract:

Physicochemical properties of Cucurbita pepo, Brachystegia eurycoma, Cucumis melo, Luffa cylindrica, and Arachis hypogaea oils were studied to determine their potential as viable feedstock for biodiesel production. The nonedible oils were extracted by solvent extraction using n-hexane while the oil of Arachis hypogaea was procured. All the oils were characterized for specific gravity, pH, ash content, iodine value, acid value, saponification value, peroxide value, free fatty acid, flash point, kinematic viscosity, and refractive indices using standard methods. Cucurbita pepo seeds had very high oil content when compared to the others. Specific gravity and flash point of the oils were satisfactory. However, moisture content of some of the oils exceeded the stipulated ASTM standard for biodiesel production. Again, acid values of the nonedible oils were very high and exceeded the ASTM standard. They also exceeded the acid value of Arachis hypogaea oil except for Luffa cylindrica oil. Results indicate that the oils are potential biodiesel feedstocks. However, overall results indicate that the nonedible oils are not suitable for single-stage transesterification process to biodiesel but would be better suited for the two stage esterification and subsequent transesterification in order to obtain reasonable yields of the methyl esters. 1. Introduction The rapidly growing global demand for petroleum products and the consequent depletion of the crude oil reserves in addition to adverse environmental concerns and unstable nature of the international market make imperative the need to explore alternative sources of fuel. Biodiesel is one of the promising renewable energy options already exploited by various countries. Categories of feedstocks as source of suitable oil for biodiesel production include seeds, nuts, leaves, wood, and even bark of trees. Nigeria is very well endowed with various edible and nonedible oils. As a result of the extensive demands of oil for consumption and industrial uses, analyses of many oils have been carried out. The extraction and use of vegetable oils has for centuries played an important role in the manufacture of a large number of industrial products and food items [1] and also in biodiesel production. Certain edible oils such as cottonseed and safflower can be used as raw materials for biodiesel production. Some of the nonedible oils such as mahua, castor, neem (Azadirachta indica) , rice bran, linseed, Karanja (Pongamia pinnata), and jatropha (Jatropha curcas) have also be used [2]. However availability of these raw materials

References

[1]  T. Puangsri, S. M. Abdulkarim, and H. M. Ghazali, “Properties of carica papaya L. (papaya) seed oil following extraction using solvent and aqueous enzymatic methods,” Journal of Food Lipids, vol. 12, no. 1, pp. 62–76, 2005.
[2]  M. V. Nagarhalli, V. M. Nandedkar, and K. C. Mohite, “Emission and performance characteristics of karanja biodiesel and its blends in a C.I. engine and it's economics,” Journal of Engineering and Applied Sciences, vol. 5, pp. 52–56, 2010.
[3]  S. Miladi, R. Jarraya, and M. Damak, “Lipid composition and antioxidant activities of Daucus maritimus seeds,” Journal of Applied Sciences, vol. 8, no. 24, pp. 4689–4693, 2008.
[4]  M. C. Ndukwu, “Determination of selected physical properties of Brachystegia eury coma seeds,” Research in Agricultural Engineering, vol. 55, no. 4, pp. 165–169, 2009.
[5]  I. O. Oboh and E. O. Aluyor, “Luffa cylindrica—an emerging cash crop,” African Journal of Agricultural Research, vol. 4, no. 8, pp. 684–688, 2009.
[6]  D. Gonzalez-Ibeas, J. Blanca, L. Donaire et al., “Analysis of the melon (Cucumis melo) small RNAome by high-throughput pyrosequencing,” BMC Genomics, vol. 12, article 393, 2011.
[7]  R. Rakhi and L. Rajamony, “Variability, heritability and genetic advance in landraces of culinary melon (Cucumis melo L.),” Journal of Tropical Agriculture, vol. 43, no. 1-2, pp. 79–82, 2005.
[8]  A. Idouraine, E. A. Kohlhepp, and C. W. Weber, “Nutrient constituents from eight lines of naked seed squash (Cucurbita pepo L.),” Journal of Agricultural and Food Chemistry, vol. 44, no. 3, pp. 721–724, 1996.
[9]  M. A. Ali, M. A. Sayeed, R. K. Roy, S. Yeasmin, and A. M. Khan, “Comparative study on characteristics of seed oils and nutritional composition of seeds from differet varieties of tobacco (Nicotiana tabacum l.) cultivated in Bangladesh,” Asian Journal of Biochemistry, vol. 3, no. 4, pp. 203–212, 2008.
[10]  R. K. Singh and S. K. Padhi, “Characterization of jatropha oil for the preparation of biodiesel,” Natural Product Radiance, vol. 8, no. 2, pp. 127–132, 2009.
[11]  M. Manzoor, F. Anwar, T. Iqbal, and M. I. Bhanger, “Physico-chemical characterization of moringa concanensis seeds and seed oil,” Journal of the American Oil Chemists' Society, vol. 84, no. 5, pp. 413–419, 2007.
[12]  J. Van Gerpen, “Biodiesel processing and production,” Fuel Processing Technology, vol. 86, no. 10, pp. 1097–1107, 2005.
[13]  Anon, Palm Oil Research Institute of Malaysia, Ministry of Primary Industries, Bangi, Malaysia, 1995.
[14]  FAO, Guide to Specifications for General Notices, General Analytical Techniques, Identification Tests, Test Solutions, and other Reference Materials, vol. 5 of FAO Food and Nutrition, Rome, Italy, 1991.
[15]  I. R. Ejilah and A. A. Asere, “Tested performance parameters of Transesterified sheanut oil and diesel fuel blends in compression ignition engines,” in Proceedings of the National Solar Energy Forum in Makurdi, Nigeria, pp. 1–14, 2009.
[16]  P. M. Ejikeme, C. A. C. Egbonu, I. D. Anyaogu, and V. C. Eze, “Fatty acid methy esters of melon seed oil: characterization for potential diesel fuel application,” in Chemical Society of Nigeria, Enugu Chapter, Coal City Chemistry Conference proceedings, pp. 37–41, 2008.
[17]  A. Galadima, Z. N. Garba, and B. M. Ibrahim, “Homogeneous and heterogeneous transesterification of groundnut oil for synthesizing methyl biodiesel,” International Journal of Pure and Applied Sciences, vol. 2, pp. 138–144, 2008.
[18]  S. M. Son, K. Kusakabe, and G. Guan, “Biodiesel synthesis and properties from sunflower and waste cooking oils using CaO catalyst under reflux conditions,” Journal of applied Sciences, vol. 10, no. 4, pp. 3191–3198, 2010.
[19]  G. Knothe, “Structure indices in FA chemistry. How relevant is the iodine value?” Journal of the American Oil Chemists' Society, vol. 79, no. 9, pp. 847–854, 2002.
[20]  H. Sulistyo, I. M. Suardjaja, and S. S. Rahayu, “Transesterification of candlenut oil with ethanol to biodiesel,” in Proceeding on Regional Symposium on Chemical Engineering (RSCE '06), Singapore, December 2006.
[21]  A. E. Balley, Industrial Oil and Fat Product, John Wiley-Interscience, New York, NY, USA, 3rd edition, 1982.
[22]  “Codex Alimentairus Commission,” Graisses et huiles vegetables, division 11. Version Abregee FAO/WHO Codex Stan 1993, 20-1981, 23-1981, 1993.
[23]  F. Ma and M. A. Hanna, “Biodiesel production: a review,” Bioresource Technology, vol. 70, no. 1, pp. 1–15, 1999.
[24]  A. Kac, “The foolproof way to make biodiesel: free fatty acid to ester conversion,” 2001, http://journeytoforever.org/biodiesel_aleksnew.html.
[25]  E. Akbar, Z. Yaakob, S. K. Kamarudin, M. Ismail, and J. Salimon, “Characteristic and composition of Jatropha curcas oil seed from Malaysia and its potential as biodiesel feedstock feedstock,” European Journal of Scientific Research, vol. 29, no. 3, pp. 396–403, 2009.
[26]  O. O. Omolara and O. O. Dosumu, “Preliminary Studies on the effect of processing methods on the quality of three commonly consumed marine fishes in Nigeria,” Biokemistri, vol. 21, no. 1, pp. 1–7, 2009.
[27]  J. M. Nzikou, M. Mvoula-Tsieri, L. Matos et al., “Solanum nigrum L. seeds as an alternative source of edible lipids and nutriment in Congo Brazzaville,” Journal of Applied Sciences, vol. 7, no. 8, pp. 1107–1115, 2007.
[28]  V. A. Sodeke, “Extraction of oil from water melon seed and analysis,” Quarterly Research Service, 2005.
[29]  O. M. Oluba, Y. R. Ogunlowo, G. C. Ojieh, K. E. Adebisi, G. O. Eidangbe, and I. O. Isiosio, “Physicochemical properties and fatty acid composition of Citrullus lanatus (Egusi Melon) seed oil,” Journal of Biological Sciences, vol. 8, no. 4, pp. 814–817, 2008.
[30]  F. Shahidi, Quality Assurance of Fats and Oils. Bailey's Industrial Oil and Fat Products, vol. 6 of Edited by F. Shahidi, John Wiley & Sons, 6th edition, 2005.
[31]  A. R. Sadrolhosseini, M. M. Moksin, H. L. L. Nang, M. Norozi, M. M. W. Yunus, and A. Zakaria, “Physical properties of normal grade biodiesel and winter grade biodiesel,” International Journal of Molecular Sciences, vol. 12, no. 4, pp. 2100–2111, 2011.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133