全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Comparison of Residual Energy-Based Clustering Algorithms for Wireless Sensor Network

DOI: 10.5402/2012/375026

Full-Text   Cite this paper   Add to My Lib

Abstract:

Wireless sensor network swears an exceptional fine-grained interface between the virtual and physical worlds. The clustering algorithm is a kind of key technique used to reduce energy consumption. Many clustering, power management, and data dissemination protocols have been specifically designed for wireless sensor network (WSN) where energy awareness is an essential design issue. Each clustering algorithm is composed of three phases cluster head (CH) selection, the setup phase, and steady state phase. The hot point in these algorithms is the cluster head selection. The focus, however, has been given to the residual energy-based clustering protocols which might differ depending on the application and network architecture. In this paper, a survey of the state-of-the-art clustering techniques in WSNs has been compared to find the merits and demerits among themselves. It has been assumed that the sensor nodes are randomly distributed and are not mobile, the coordinates of the base station (BS) and the dimensions of the sensor field are known. 1. Introduction With the proliferation in automated devices and the development in wireless technologies WSNs have gained worldwide attention in recent years. WSNs as an exciting emerging domain of deeply networked systems of low-power wireless nodes with a tiny amount of CPU and memory for high-resolution sensing of the environment [1]. The wireless nodes are nothing but a large number of low-cost, multifunctional sensor nodes that are deployed in a region of interest. The sensor nodes not only senses but also processes the data to make itself meaningful by using its embedded microprocessors and also communicates those meaningful data through its transceiver [2]. They communicate over a short distance via a wireless medium and collaborate to accomplish a common task, for example, environment monitoring, battlefield surveillance, and industrial process control [3]. WSNs are made up of a large number of inexpensive devices that are networked via low-power wireless communications [4, 5]. Due to the networking capability that fundamentally appears in a sensor network, it overcomes the flaws present in a mere collection of sensors, by enabling cooperation, coordination, and collaboration among sensor assets [6]. Wireless sensor network technology is expected to have a significant impact on our lives in the twenty-first century by harvesting advancements in the past decade in microelectronics, sensing, analog and digital signal processing, wireless communications, and networking. Wireless sensor networks differ

References

[1]  I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “Wireless sensor networks: a survey,” Computer Networks, vol. 38, no. 4, pp. 393–422, 2002.
[2]  W. B. Heinzelman, A. P. Chandrakasan, and H. Balakrishnan, “An application-specific protocol architecture for wireless microsensor networks,” IEEE Transactions on Wireless Communications, vol. 1, no. 4, pp. 660–670, 2002.
[3]  K. Akkaya and M. Younis, “A survey on routing protocols for wireless sensor networks,” Ad Hoc Networks, vol. 3, no. 3, pp. 325–349, 2005.
[4]  S. Chinara and S. K. Rath, “A survey on one-hop clustering algorithms in mobile ad hoc networks,” Journal of Network and Systems Management, vol. 17, no. 1-2, pp. 183–207, 2009.
[5]  G. Barrenetxea, F. Ingelrest, G. Schaefer, and M. Vetterli, “The hitchhiker’s guide to successful wireless sensor network deployments,” in Proceedings of the SenSys Conference, pp. 43–56, 2008.
[6]  A. A. Abbasi and M. Younis, “A survey on clustering algorithms for wireless sensor networks,” Computer Communications, vol. 30, no. 14-15, pp. 2826–2841, 2007.
[7]  T. Naumowicz, R. Freeman, A. Heil et al., “Autonomous monitoring of vulnerable habitats using a wireless sensor network,” in Proceedings of the 3rd Workshop on Real-World Wireless Sensor Networks (REALWSN '08), pp. 51–55, April 2008.
[8]  V. Katiyar, N. Chand, and S. Soni, “A survey on clustering algorithms for heterogeneous wireless sensor networks,” International Journal of Advanced Networking and Applications, vol. 2, no. 4, pp. 745–754, 2011.
[9]  I. Güven? and C. C. Chong, “A survey on TOA based wireless localization and NLOS mitigation techniques,” IEEE Communications Surveys and Tutorials, vol. 11, no. 3, pp. 107–124, 2009.
[10]  E. P. De Freitas, T. Heimfarth, C. E. Pereira, A. M. Ferreira, F. R. Wagner, and T. Larsson, “Evaluation of coordination strategies for heterogeneous sensor networks aiming at surveillance applications,” in Proceedings of the IEEE Sensors Conference (SENSORS '09), pp. 591–596, October 2009.
[11]  S. Yi, J. Heo, Y. Cho, and J. Hong, “PEACH: power-efficient and adaptive clustering hierarchy protocol for wireless sensor networks,” Computer Communications, vol. 30, no. 14-15, pp. 2842–2852, 2007.
[12]  G. Xin, W. H. Yang, and B. DeGang, “EEHCA: an energy-efficient hierarchical clustering algorithm for wireless sensor networks,” Information Technology Journal, vol. 7, no. 2, pp. 245–252, 2008.
[13]  B. Elbhiri, R. Saadane, and D. Aboutajdine, “Stochastic and equitable distributed energy efficient clustering (sedeec) for heterogeneous wireless sensor networks,” International Journal of Ad Hoc and Ubiquitous Computing, vol. 7, no. 1, pp. 4–11, 2011.
[14]  C. Duan and H. Fan, “A distributed energy balance clustering protocol for heterogeneous wireless sensor networks,” in Proceedings of the International Conference on Wireless Communications, Networking and Mobile Computing (WiCOM '07), pp. 2469–2473, September 2007.
[15]  E. Cayirci and T. Coplu, “SENDROM: sensor networks for disaster relief operations management,” Wireless Networks, vol. 13, no. 3, pp. 409–423, 2007.
[16]  G. Wittenburg, K. Terfloth, F. L. Villafuerte, T. Naumowicz, H. Ritter, and J. Schiller, “Fence monitoring: experimental evaluation of a use case for wireless sensor networks,” in Proceedings of the 4th European Conference on Wireless Sensor Networks (EWSN ’07), pp. 163–178, 2007.
[17]  X. Zhu, L. Shen, and T. S. P. Yum, “Hausdorff clustering and minimum energy routing for wireless sensor networks,” in Proceedings of the 18th Annual IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC '07), pp. 1–7, September 2007.
[18]  N. Bouabdallah, M. E. Rivero-Angeles, and B. Sericola, “Continuous monitoring using event-driven reporting for cluster-based wireless sensor networks,” IEEE Transactions on Vehicular Technology, vol. 58, no. 7, pp. 3460–3479, 2009.
[19]  N. Patwari, J. N. Ash, S. Kyperountas, A. O. Hero, R. L. Moses, and N. S. Correal, “Locating the nodes: cooperative localization in wireless sensor networks,” IEEE Signal Processing Magazine, vol. 22, no. 4, pp. 54–69, 2005.
[20]  A. Boukerche, H. A. B. F. Oliveira, E. F. Nakamura, and A. A. F. Loureiro, “Localization systems for wireless sensor networks,” IEEE Wireless Communications, vol. 14, no. 6, pp. 6–12, 2007.
[21]  R. Rajagopalan and P. K. Varshney, “Data aggregation techniques in sensor networks: a survey,” IEEE Communications Surveys & Tutorials, vol. 8, no. 4, pp. 48–63, 2006.
[22]  M. C. M. Thein and T. Thein, “An energy efficient cluster-head selection for wireless sensor networks,” in Proceedings of the UKSim/AMSS 1st International Conference on Intelligent Systems, Modelling and Simulation (ISMS '10), pp. 287–291, January 2010.
[23]  O. Younis, M. Krunz, and S. Ramasubramanian, “Node clustering in wireless sensor networks: recent developments and deployment challenges,” IEEE Network, vol. 20, no. 3, pp. 20–25, 2006.
[24]  T. Kaur and J. Baek, “A strategic deployment and cluster-header selection for wireless sensor networks,” IEEE Transactions on Consumer Electronics, vol. 55, no. 4, pp. 1890–1897, 2009.
[25]  R. Burne, “A self-organizing, cooperative ugs network for target tracking,” in Proceedings of the SPIE 2nd Conference on Unattended Ground Sensor Technologies and Applications, 2000.
[26]  M. Younis, M. Youssef, and K. Arisha, “Energy-aware management for cluster-based sensor networks,” Computer Networks, vol. 43, no. 5, pp. 649–668, 2003.
[27]  C. Y. Chong and S. P. Kumar, “Sensor networks: evolution, opportunities, and challenges,” Proceedings of the IEEE, vol. 91, no. 8, pp. 1247–1256, 2003.
[28]  O. Younis and S. Fahmy, “HEED: a hybrid, energy-efficient, distributed clustering approach for ad hoc sensor networks,” IEEE Transactions on Mobile Computing, vol. 3, no. 4, pp. 366–379, 2004.
[29]  P. Ding, J. Holliday, and A. Celik, “Distributed energy-efficient hierarchical clustering for wireless sensor networks,” in Proceedings of the 1st IEEE International Conference on Distributed Computing in Sensor Systems (DCOSS '05), pp. 322–339, July 2005.
[30]  P. Neamatollahi, H. Taheri, M. Naghibzadeh, and M. H. Yaghmaee, “A hybrid clustering approach for prolonging lifetime in wireless sensor networks,” in Proceedings of the International Symposium on Computer Networks and Distributed Systems (CNDS '11), pp. 170–174, February 2011.
[31]  X. Wang and G. Zhang, “Decp: a distributed election clustering protocol for heterogeneous wireless sensor networks,” in Proceedings of the 7th international conference on Computational Science (ICCS ’07), pp. 108–105, 2007.
[32]  H. Zhou, Y. Wu, Y. Hu, and G. Xie, “A novel stable selection and reliable transmission protocol for clustered heterogeneous wireless sensor networks,” Computer Communications, vol. 33, no. 15, pp. 1843–1849, 2010.
[33]  C. Li, M. Ye, G. Chen, and J. Wu, “An energy-efficient unequal clustering mechanism for wireless sensor networks,” in Proceedings of the 2nd IEEE International Conference on Mobile Ad-hoc and Sensor Systems (MASS '05), pp. 604–611, November 2005.
[34]  L. Qing, Q. Zhu, and M. Wang, “Design of a distributed energy-efficient clustering algorithm for heterogeneous wireless sensor networks,” Computer Communications, vol. 29, no. 12, pp. 2230–2237, 2006.
[35]  M. Ye, C. Li, G. Chen, and J. Wu, “EECS: an energy efficient clustering scheme in wireless sensor networks 10a.2,” in Proceedings of the 24th IEEE International Performance, Computing, and Communications Conference (IPCCC '05), pp. 535–540, April 2005.
[36]  B. Gong, L. Li, S. Wang, and X. Zhou, “Multihop routing protocol with unequal clustering for wireless sensor networks,” in Proceedings of the ISECS International Colloquium on Computing, Communication, Control, and Management (CCCM '08), vol. 2, pp. 552–556, August 2008.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133