全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

A 6LoWPAN Routing Optimization Mechanism for WMSN

DOI: 10.1155/2013/639081

Full-Text   Cite this paper   Add to My Lib

Abstract:

In Wireless sensor networks (WSNs), group mobility is important in many practical application scenarios, and it is inconvenient for traditional static WSNs to collect information. In this paper, we propose a WSN model based on IPv6 over Low power Wireless Personal Area Networks (6LoWPANs) in mobile sensing application scenarios. Wireless mesh sensor network (WMSN) infrastructure and Network Mobility (NEMO) protocol are deployed to ensure the continuity of the communications. The routing optimization mechanism in the nested network is then discussed. By taking mobile network partition and IP address configuration in the nested network, the corresponding signaling flow is discussed. Simulation results indicate that our mechanism is able to minimize the transmission costing, handoff delay, throughput and energy consumption of sensor nodes. Energy of each mobile router (MR) saves around 0.2?J per 3 seconds. 1. Introduction With the maturation of wireless sensing technologies, the mobile sensing communication systems are widely applied and deployed on a global scale. The demand for information and mobility businesses hopes that some of the fixed and mobile nodes in wireless sensor network are composed of a collection of subnets as a whole, while the whole can move and access the Internet seamlessly. It is urgent that we need mobility mechanisms to support the mobile of a single terminal and subnet terminal. For example, mobile personal area networks where the sensor networks are deployed in vehicular objectives such as aircraft, automobiles, and trains [1]. The development of traditional WSN mobility management technology is still not mature enough; most mobility protocols of traditional wireless sensor networks only aim at coping with weak mobility, such as join a new node in WSNs or make a node in WSNs invalid, and it cannot completely solve problems with strong mobility. However, with 6LoWPAN-based IPv6-WSN proposal [2], IPv6-based wireless sensor network mobility management scheme is developing. 6LoWPAN [3] working group was created by Internet Engineering Task Force (IETF). 6LoWPAN protocol became a standard in 2006. The standard specifies an adaption layer above IEEE 802.15.4 MAC and Routing layers to support IPv6 packets’ transmission over IEEE 802.15.4, and network mobility can therefore be supported in WSNs. NEMO can solve problems of network mobility. At the same time, it has the higher efficiency in broadband resource utilization and better service quality assurance. The largest characteristic of NEMO is that when the topology of a network

References

[1]  J. B.-Y. Liu, P. Brass, O. Dousse, P. Nain, and D. Towsley, “Mobility improves coverage of sensor networks,” in Proceedings of the 6th ACM International Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc '05), pp. 300–308, 2005.
[2]  C. Perkins, D. Johnson, and J. Arkko, “Mobility Support in IPv6,” IETF RFC, 6275, July 2011.
[3]  N. Kushalnagar and G. Montenegro, “6LoWPAN: overview, assumptions problem statement and goals,” draft-ietf-6lowpan-problem-08 (work in progress), February 2006.
[4]  K. Rayner, “Mesh wireless networking communications engineer,” Communications, vol. l, no. 5, pp. 44–47, 2003.
[5]  C. Shen, W. Du, R. Atkinson, J. Irvine, and D. Pesch, “A mobility framework to improve heterogeneous wireless network services,” International Journal of Ad Hoc and Ubiquitous Computing, vol. 7, no. 1, pp. 60–69, 2011.
[6]  C. Shen, W. Du, R. Atkinson, and K. H. Kwong, “Policy based mobility & flow management for IPv6 heterogeneous wireless networks,” Wireless Personal Communications, pp. 1–33, 2010.
[7]  C. Shen and W. Du, “Mobility modeling for vehicular communication data dissemination,” in Computer and Information Science 2010, vol. 317 of Studies in Computational Intelligence, pp. 35–45, Springer, Berlin, Germany, 2010.
[8]  V. Devarapalli, R. Wakikawa, A. Petrescu, et al., “Network Mobility (NEMO) Basic Support Protocol,” IETF RFC3963, 2005.
[9]  R. Chai, Y. L. Zhao, Q. B. Chen, T. Dong, and W. G. Zhou, “Group mobility in 6LoWPAN-based WSN,” in Proceedings of International Conference on Wireless Communications and Signal Processing (WCSP '10), October 2010.
[10]  H. Cho, T. Kwon, and Y. Choi, “Route optimization using tree information option for Nested mobile networks,” IEEE Journal on Selected Areas in Communications, vol. 24, no. 9, pp. 1717–1724, 2006.
[11]  C. Ng, “Securing Nested Tunnels Optimization with Access Router Option,” IETF, draft-ng-nemo-access-router-option-01, July 2004.
[12]  M. Calderón, C. J. Bernardos, M. Bagnulo, I. Soto, and A. de la Oliva, “Design and experimental evaluation of a route optimization solution for NEMO,” IEEE Journal on Selected Areas in Communications, vol. 24, no. 9, pp. 1702–1716, 2006.
[13]  M. Hasan, A. H. Akbar, H. Mukhtar, K. H. Kim, and D. W. Kim, “A scheme to support mobility for IP based sensor networks,” in Proceedings of International Conference on Software Testing (ICST '08), pp. 1–9, 2008.
[14]  C. J. Bernardos, M. Bagnulo, and M. Calderón, “MIRON: MIPv6 route optimization for NEMO,” in Proceedings of the 4th Workshop on Applications and Services in Wireless Networks (ASWN '04), pp. 189–197, August 2004.
[15]  G. Tsirtsis, H. Soliman, N. Montavont, G. Giaretta, and K. Kuladinithi, “Flow Bindings in Mobile IPv6 and Network Mobility (NEMO) Basic Support,” IETF, RFC, 6089, January 2011.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413