全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

A Probabilistic Approach to Computerized Tracking of Arterial Walls in Ultrasound Image Sequences

DOI: 10.5402/2012/179087

Full-Text   Cite this paper   Add to My Lib

Abstract:

Tracking of arterial walls in ultrasound image sequences is useful for studying the dynamics of arteries. Manual delineation is prohibitively labour intensive and existing methods of computerized segmentation are limited in terms of applicability and availability. This paper presents a probabilistic approach to the computerized tracking of arterial walls that is effective and easy to implement. In the probabilistic approach, given a point B with a probability of being in an arterial lumen of interest, the probability that a neighbouring point A is also a part of the same lumen is proportional to with a Gaussian fall in probability with increasing grayscale contrast between the two points. Efficacy of the probabilistic algorithm was evaluated by testing it on ultrasound images and image sequences of the carotid arteries and the abdominal aorta and various laboratory, ultrasound test objects. The results showed that the probabilistic algorithm produced robust and effective lumen segmentation in the majority of cases encountered. Comparison with a conventional region growing technique based on intensity thresholding with a running, regional intensity average identified the main benefits of the probabilistic approach as increased immunity to speckle noise within the arterial lumen and a reduced susceptibility to region overflowing at boundary imperfections. 1. Introduction Greyscale ultrasound imaging (B-mode) is an established tool for the noninvasive imaging of the human body. Such imaging procedures are often accompanied by measurements that are conveniently performed using the ultrasonic calipers. However, it becomes a time-consuming manual task for the operator if the measurements need to be repeated a large number of times, for example, over a time series. In B-Mode vascular ultrasound, such a situation arises when one needs to track the position of the arterial walls over many frames in order to study to distension of the arteries throughout the cardiac cycle. Although specific solutions for tracking the position of the arterial walls using B-Mode ultrasound are available (Table 1), for example, by region tracking/block matching [1] or computerized edge detection [2], many of these techniques are limited in terms of applicability and some techniques have particular vulnerability to image noise. Also, a general purpose segmentation algorithm should be able to track the position of the arterial walls over a sizeable length of the artery and for any vessel orientation and morphology. Table 1: A selection of specific solutions reported to date applicable

References

[1]  S. Golemati, A. Sassano, M. J. Lever, A. A. Bharath, S. Dhanjil, and A. N. Nicolaides, “Carotid artery wall motion estimated from b-mode ultrasound using region tracking and block matching,” Ultrasound in Medicine and Biology, vol. 29, no. 3, pp. 387–399, 2003.
[2]  R. H. Selzer, W. J. Mack, P. L. Lee, H. Kwong-Fu, and H. N. Hodis, “Improved common carotid elasticity and intima-media thickness measurements from computer analysis of sequential ultrasound frames,” Atherosclerosis, vol. 154, no. 1, pp. 185–193, 2001.
[3]  I. Wendelhag, Q. Liang, T. Gustavsson, and J. Wikstrand, “A new automated computerized analyzing system simplifies readings and reduces the variability in ultrasound measurement of intima-media thickness,” Stroke, vol. 28, no. 11, pp. 2195–2200, 1997.
[4]  R. E. Bellman and S. Dreyfus, Applied Dynamic Programming, Princeton University Press, Princeton, NJ, USA, 1962.
[5]  F. Beux, S. Carmassi, M. V. Salvetti et al., “Automatic evaluation of arterial diameter variation from vascular echographic images,” Ultrasound in Medicine and Biology, vol. 27, no. 12, pp. 1621–1629, 2001.
[6]  D. C. Cheng, A. Schmidt-Trucks?ss, K. S. Cheng, and H. Burkhardt, “Using snakes to detect the intimal and adventitial layers of the common carotid artery wall in sonographic images,” Computer Methods and Programs in Biomedicine, vol. 67, no. 1, pp. 27–37, 2002.
[7]  V. R. Newey and D. K. Nassiri, “Online artery diameter measurement in ultrasound images using artificial neural networks,” Ultrasound in Medicine and Biology, vol. 28, no. 2, pp. 209–216, 2002.
[8]  M. H. Cardinal, J. Meunier, G. Soulez, R. L. Maurice, E. Therasse, and G. Cloutier, “Intravascular ultrasound image segmentation: a three-dimensional fast-marching method based on gray level distributions,” IEEE Transactions on Medical Imaging, vol. 25, no. 5, pp. 590–601, 2006.
[9]  S. Golemati, J. Stoitsis, E. G. Sifakis, T. Balkizas, and K. S. Nikita, “Using the Hough transform to segment ultrasound images of longitudinal and transverse sections of the carotid artery,” Ultrasound in Medicine and Biology, vol. 33, no. 12, pp. 1918–1932, 2007.
[10]  G. Mendizabal-Ruiz, M. Rivera, and I. A. Kakadiaris, “A probabilistic segmentation method for the identification of luminal borders in intravascular ultrasound images,” in Proceedings of the 26th IEEE Conference on Computer Vision and Pattern Recognition (CVPR '08), pp. 1–8, June 2008.
[11]  X. Yang, M. Ding, L. Lou, M. Yuchi, W. Qiu, and Y. Sun, “Common carotid artery lumen segmentation in B-mode ultrasound transverse view images,” International Journal of Image, Graphics and Signal Processing, vol. 5, pp. 15–21, 2011.
[12]  J. A. Noble and D. Boukerroui, “Ultrasound image segmentation: a survey,” IEEE Transactions on Medical Imaging, vol. 25, no. 8, pp. 987–1010, 2006.
[13]  K. V. Ramnarine, B. Kanber, and R. B. Panerai, “Assessing the performance of vessel wall tracking algorithms: the importance of the test phantom,” Journal of Physics, vol. 1, pp. 199–204, 2004.
[14]  M. W. Claridge, G. R. Bate, J. A. Dineley et al., “A reproducibility study of a TDI-based method to calculate indices of arterial stiffness,” Ultrasound in Medicine and Biology, vol. 34, no. 2, pp. 215–220, 2007.
[15]  C. J. P. M. Teirlinck, R. A. Bezemer, C. Kollmann et al., “Development of an example flow test object and comparison of five of these test objects, constructed in various laboratories,” Ultrasonics, vol. 36, no. 1–5, pp. 653–660, 1998.
[16]  K. V. Ramnarine, D. K. Nassiri, P. R. Hoskins, and J. Lubbers, “Validation of a new blood-mimicking fluid for use in Doppler flow test objects,” Ultrasound in Medicine and Biology, vol. 24, no. 3, pp. 451–459, 1998.
[17]  K. V. Ramnarine, P. R. Hoskins, H. F. Routh, and F. Davidson, “Doppler backscatter properties of a blood-mimicking fluid for doppler performance assessment,” Ultrasound in Medicine and Biology, vol. 25, no. 1, pp. 105–110, 1999.
[18]  L. Germond, O. Bonnefous, and T. Loupas, “Quantitative assessment of the artery dilation measurements with an arterial phantom,” in Proceedings of the 2001 Ultrasonics Symposium, pp. 1413–1416, October 2001.
[19]  2011, Region Growing (2D/3D greyscale). MATLAB Central File Exchange, http://www.mathworks.com/matlabcentral/fileexchange/32532.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413